ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В трапеции ABCD диагональ AC перпендикулярна боковой стороне CD, а диагональ DB перпендикулярна боковой стороне AB. На продолжениях боковых сторон AB и DC за меньшее основание BC отложены отрезки BM и CN так, что получается новая трапеция BMNC, подобная трапеции ABCD. Найдите площадь трапеции ABCD, если площадь трапеции AMND равна S, а сумма углов CAD и BDA равна 60°.

Вниз   Решение


Решить предыдущую задачу, если про массивы известно лишь, что x[1]...≤x[k] и  y[1]...≤y[l] (возрастание заменено неубыванием).

ВверхВниз   Решение


Докажите, что с помощью поворота

x'' = x'cosφ + y'sinφ,    y'' = - x'sinφ + y'cosφ

в уравнении ax'2 + 2bx'y' + cy'2 = f' коэффициент при x'y' можно сделать равным нулю.

ВверхВниз   Решение


Даны две одинаковые окружности. На каждой из них отмечено по k дуг, угловые величины каждой из которых меньше $ {\frac{1}{k^2-k+1}}$ . 180o, причем окружности можно совместить так, чтобы отмеченные дуги одной окружности совпали с отмеченными дугами другой. Докажите, что эти окружности можно совместить так, чтобы все отмеченные дуги оказались на неотмеченных местах.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 58098  (#21.019)

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 5
Классы: 8,9,10

На отрезке длиной 1 закрашено несколько отрезков, причем расстояние между любыми двумя закрашенными точками не равно 0, 1. Докажите, что сумма длин закрашенных отрезков не превосходит 0, 5.
Прислать комментарий     Решение


Задача 58099  (#21.020)

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Поворот помогает решить задачу ]
Сложность: 6-
Классы: 8,9,10,11

Даны две окружности, длина каждой из которых равна 100 см. На одной из них отмечено 100 точек, а на другой — несколько дуг, сумма длин которых меньше 1 см. Докажите, что эти окружности можно совместить так, чтобы ни одна отмеченная точка не попала на отмеченную дугу.
Прислать комментарий     Решение


Задача 58100  (#21.021)

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Поворот помогает решить задачу ]
Сложность: 6
Классы: 8,9,10,11

Даны две одинаковые окружности. На каждой из них отмечено по k дуг, угловые величины каждой из которых меньше $ {\frac{1}{k^2-k+1}}$ . 180o, причем окружности можно совместить так, чтобы отмеченные дуги одной окружности совпали с отмеченными дугами другой. Докажите, что эти окружности можно совместить так, чтобы все отмеченные дуги оказались на неотмеченных местах.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .