|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан прямоугольный треугольник ABC. Из вершины B прямого угла проведена медиана BD. Пусть K – точка касания стороны AD треугольника ABD с вписанной окружностью этого треугольника. Найти острые углы треугольника ABC, если K делит AD пополам. В ряд стояло 10 детей. В сумме у девочек и у мальчиков орехов было поровну. Каждый ребёнок отдал по ореху каждому из стоящих правее его. После этого у девочек стало на 25 орехов больше, чем было. Сколько в ряду девочек? Кабинки горнолыжного подъёмника занумерованы подряд числами от 1 до 99. Игорь сел в кабинку №42 подъёмника у подножия горы и в какой-то момент заметил, что он поравнялся с движущейся вниз кабинкой №13 (см. рисунок), а через 15 секунд его кабинка поравнялась с кабинкой №12. На плоскости дано n точек и отмечены середины всех отрезков с концами в этих точках. Докажите, что различных отмеченных точек не менее 2n - 3. Можно ли разрезать на четыре остроугольных треугольника Имеется 1955 точек. Какое максимальное число троек можно из них выбрать так, чтобы каждые две тройки имели ровно одну общую точку? На отрезке длиной 1 закрашено несколько отрезков, причем расстояние между любыми двумя закрашенными точками не равно 0, 1. Докажите, что сумма длин закрашенных отрезков не превосходит 0, 5. |
Страница: << 1 2 [Всего задач: 8]
Страница: << 1 2 [Всего задач: 8] |
|||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|