Версия для печати
Убрать все задачи
На доске записано произведение a1a2... a100, где a1, ..., a100 – натуральные числа. Рассмотрим 99 выражений, каждое из которых получается заменой одного из знаков умножения на знак сложения. Известно, что значения ровно 32 из этих выражений чётные. Какое наибольшее количество чётных чисел среди a1, a2, ..., a100 могло быть?

Решение
Прямая, проходящая через центры вписанной и описанной
окружностей треугольника, перпендикулярна одной из его
биссектрис. Известно, что отношение радиуса вписанной окружности
к расстоянию между центрами вписанной и описанной окружностей
равно равно m. Найдите углы треугольника.


Решение
Докажите, что многоугольник нельзя покрыть двумя
многоугольниками, гомотетичными ему с коэффициентом
k,
где 0 <
k < 1.

Решение