ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Докажите, что сумма n последовательных нечётных натуральных чисел при  n > 1  является составным числом.

Вниз   Решение


Автор: Сонкин М.

В равнобедренном треугольнике ABC ( AB=BC ) проведена биссектриса CD . Прямая, перпендикулярная CD и проходящая через центр описанной около треугольника ABC окружности, пересекает BC в точке E . Прямая, проходящая через точку E параллельно CD , пересекает AB в точке F . Докажите, что BE=FD .

ВверхВниз   Решение


Шесть ящиков занумерованы числами от 1 до 6. Сколькими способами можно разложить по этим ящикам 20 одинаковых шаров
  а) так, чтобы ни один ящик не оказался пустым?
  б) если некоторые ящики могут оказаться пустыми)?

ВверхВниз   Решение


Найдите геометрическое место точек M, лежащих внутри правильного треугольника ABC, для которых MA2 = MB2 + MC2.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]      



Задача 57929  (#18.010)

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 9

Постройте равносторонний треугольник ABC так, чтобы его вершины лежали на трех данных параллельных прямых.
Прислать комментарий     Решение


Задача 57930  (#18.011)

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 9

Рассмотрим всевозможные равносторонние треугольники PKM, вершина P которых фиксирована, а вершина K лежит в данном квадрате. Найдите геометрическое место вершин M.
Прислать комментарий     Решение


Задача 57931  (#18.012)

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 9

На сторонах BC и CD параллелограмма ABCD построены внешним образом правильные треугольники BCP и CDQ. Докажите, что треугольник APQ правильный.
Прислать комментарий     Решение


Задача 52355  (#18.013)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Теорема Птолемея ]
Сложность: 3+
Классы: 8,9,10

На дуге BC окружности, описанной около равностороннего треугольника ABC, взята произвольная точка P. Докажите, что  AP = BP + CP.

Прислать комментарий     Решение

Задача 57933  (#18.014)

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 9

Найдите геометрическое место точек M, лежащих внутри правильного треугольника ABC, для которых MA2 = MB2 + MC2.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .