ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Автор: Фольклор

В квадрате 7×7 клеток размещено 16 плиток размером 1×3 и одна плитка 1×1.
Докажите, что плитка 1×1 либо лежит в центре, либо примыкает к границам квадрата.

Вниз   Решение


Диагонали трапеции ABCD пересекаются в точке K. На боковых сторонах трапеции, как на диаметрах, построены окружности. Точка K лежит вне этих окружностей. Докажите, что длины касательных, проведённых к этим окружностям из точки K, равны.

ВверхВниз   Решение


Касательные к описанной окружности неравнобедренного треугольника ABC в точках A, B и C пересекают продолжения сторон в точках A1, B1 и C1. Докажите, что точки A1, B1 и C1 лежат на одной прямой.=-1



ВверхВниз   Решение


Докажите, что при повороте окружность переходит в окружность.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 53]      



Задача 57914  (#18.000.1)

Тема:   [ Поворот (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что при повороте окружность переходит в окружность.
Прислать комментарий     Решение


Задача 57915  (#18.000.2)

Тема:   [ Поворот (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что выпуклый n-угольник является правильным тогда и только тогда, когда он переходит в себя при повороте на угол 360o/n относительно некоторой точки.
Прислать комментарий     Решение


Задача 57916  (#18.000.3)

Тема:   [ Поворот (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что треугольник ABC является правильным тогда и только тогда, когда при повороте на 60o (либо по часовой стрелке, либо против) относительно точки A вершина B переходит в C.
Прислать комментарий     Решение


Задача 57917  (#18.000.4)

Тема:   [ Поворот (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что середины сторон правильного многоугольника образуют правильный многоугольник.
Прислать комментарий     Решение


Задача 57918  (#18.000.5)

Тема:   [ Поворот (прочее) ]
Сложность: 2-
Классы: 9

Через центр квадрата проведены две перпендикулярные прямые. Докажите, что их точки пересечения со сторонами квадрата образуют квадрат.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .