ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

  Обозначим через S(k) сумму цифр натурального числа k. Натуральное число a назовём n-хорошим, если существует такая последовательность натуральных чисел a0, a1, ..., an, что  an = a  и  ai+1 = ai – S(ai)  при всех  i = 0, 1, ..., n – 1.  Верно ли, что для любого натурального n существует натуральное число, являющееся n-хорошим, но не являющееся (n+1)-хорошим?

Вниз   Решение


Даны натуральные числа x1, ..., xn. Докажите, что число      можно представить в виде суммы квадратов двух целых чисел.

ВверхВниз   Решение


а) Найдите ГМТ, равноудаленных от двух параллельных прямых.
б) Найдите ГМТ, равноудаленных от двух пересекающихся прямых.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 4556]      



Задача 57005

Тема:   [ Многоугольники (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что выпуклый четырехугольник ABCD можно вписать в окружность тогда и только тогда, когда  $ \angle$ABC + $ \angle$CDA = 180o.
Прислать комментарий     Решение


Задача 57006

Тема:   [ Многоугольники (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что в выпуклый четырехугольник ABCD можно вписать окружность тогда и только тогда, когда  AB + CD = BC + AD.
Прислать комментарий     Решение


Задача 57007

Тема:   [ Многоугольники (прочее) ]
Сложность: 2-
Классы: 8,9

а) Докажите, что оси симметрии правильного многоугольника пересекаются в одной точке.

б) Докажите, что правильный 2n-угольник имеет центр симметрии.
Прислать комментарий     Решение


Задача 57008

Тема:   [ Многоугольники (прочее) ]
Сложность: 2-
Классы: 7,8,9

а) Докажите, что сумма углов при вершинах выпуклого n-угольника равна  (n - 2) . 180o.
б) Выпуклый n-угольник разрезан непересекающимися диагоналями на треугольники. Докажите, что количество этих треугольников равно n - 2.
Прислать комментарий     Решение


Задача 57124

Тема:   [ ГМТ (прочее) ]
Сложность: 2-
Классы: 7

а) Найдите ГМТ, равноудаленных от двух параллельных прямых.
б) Найдите ГМТ, равноудаленных от двух пересекающихся прямых.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 4556]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .