|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Книги/журналы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Обозначим через S(k) сумму цифр натурального числа k. Натуральное число a назовём n-хорошим, если существует такая последовательность натуральных чисел a0, a1, ..., an, что an = a и ai+1 = ai – S(ai) при всех i = 0, 1, ..., n – 1. Верно ли, что для любого натурального n существует натуральное число, являющееся n-хорошим, но не являющееся (n+1)-хорошим? Даны натуральные числа x1, ..., xn. Докажите, что число а) Найдите ГМТ, равноудаленных от двух параллельных прямых. б) Найдите ГМТ, равноудаленных от двух пересекающихся прямых. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 4556]
б) Докажите, что правильный 2n-угольник имеет центр симметрии.
б) Выпуклый n-угольник разрезан непересекающимися диагоналями на треугольники. Докажите, что количество этих треугольников равно n - 2.
б) Найдите ГМТ, равноудаленных от двух пересекающихся прямых.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 4556] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|