ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Окружность отсекает от прямоугольника ABCD четыре прямоугольных треугольника, середины гипотенуз которых A0, B0, C0 и D0 соответственно.
Докажите, что отрезки A0C0 и B0D0 равны.

Вниз   Решение


Автор: Фольклор

Докажите, что ни при каких натуральных значениях x и y число  x8x7y + x6y² – ... – xy7 + y8  не является простым.

ВверхВниз   Решение


Автор: Храмцов Д.

На окружности длины 2013 отмечены 2013 точек, делящих её на равные дуги. В каждой отмеченной точке стоит фишка. Назовём расстоянием между двумя точками длину меньшей дуги между ними. При каком наибольшем n можно переставить фишки так, чтобы снова в каждой отмеченной точке было по фишке, а расстояние между любыми двумя фишками, изначально удалёнными не более чем на n, увеличилось?

ВверхВниз   Решение


Для каких n существует выпуклый n-угольник, у которого одна сторона имеет длину 1, а длины всех диагоналей — целые числа?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 57100

Тема:   [ Выпуклые многоугольники ]
Сложность: 4
Классы: 9

Какое наибольшее число острых углов может иметь выпуклый многоугольник?
Прислать комментарий     Решение


Задача 57101

Тема:   [ Выпуклые многоугольники ]
Сложность: 5
Классы: 9

Сколько в выпуклом многоугольнике может быть сторон, равных по длине наибольшей диагонали?
Прислать комментарий     Решение


Задача 57102

Тема:   [ Выпуклые многоугольники ]
Сложность: 5
Классы: 9

Для каких n существует выпуклый n-угольник, у которого одна сторона имеет длину 1, а длины всех диагоналей — целые числа?
Прислать комментарий     Решение


Задача 57103

Тема:   [ Выпуклые многоугольники ]
Сложность: 5+
Классы: 9

Может ли выпуклый неправильный пятиугольник иметь ровно четыре стороны одинаковой длины и ровно четыре диагонали одинаковой длины?
Может ли в таком пятиугольнике пятая сторона иметь общую точку с пятой диагональю?
Прислать комментарий     Решение


Задача 57104

Тема:   [ Выпуклые многоугольники ]
Сложность: 5+
Классы: 9

Точка O, лежащая внутри выпуклого многоугольника, образует с каждыми двумя его вершинами равнобедренный треугольник. Докажите, что точка O равноудалена от вершин этого многоугольника.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .