ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Найдите наибольшее значение функции y = 14x-7tgx-3,5π +11 на отрезке [-;] .

Вниз   Решение


На антарктической станции n полярников, все разного возраста. С вероятностью p между каждыми двумя полярниками завязываются дружеские отношения, независимо от других симпатий или антипатий. Когда зимовка заканчивается и наступает пора разъезжаться по домам, в каждой паре друзей старший даёт младшему дружеский совет. Найдите математическое ожидание числа тех, кто так и не получил ни одного дружеского совета.

ВверхВниз   Решение


Через точки пересечения продолжений сторон выпуклого четырехугольника ABCD проведены две прямые, делящие его на четыре четырехугольника. Докажите, что если четырехугольники, примыкающие к вершинам B и D, описанные, то четырехугольник ABCD тоже описанный.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 20]      



Задача 57018

Тема:   [ Описанные четырехугольники ]
Сложность: 5
Классы: 8,9

Через точки пересечения продолжений сторон выпуклого четырехугольника ABCD проведены две прямые, делящие его на четыре четырехугольника. Докажите, что если четырехугольники, примыкающие к вершинам B и D, описанные, то четырехугольник ABCD тоже описанный.
Прислать комментарий     Решение


Задача 57023

Тема:   [ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 8,9

Четырехугольник ABCD вписанный; Hc и Hd — ортоцентры треугольников ABD и ABC. Докажите, что CDHcHd — параллелограмм.
Прислать комментарий     Решение


Задача 57026

Тема:   [ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 8,9

Диагональ AC разбивает четырехугольник ABCD на два треугольника, вписанные окружности которых касаются диагонали AC в одной точке. Докажите, что вписанные окружности треугольников ABD и BCD тоже касаются диагонали BD в одной точке, а точки их касания со сторонами четырехугольника лежат на одной окружности.
Прислать комментарий     Решение


Задача 57027

Тема:   [ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 8,9

Докажите, что проекции точки пересечения диагоналей вписанного четырехугольника на его стороны являются вершинами описанного четырехугольника, если только они не попадают на продолжения сторон.
Прислать комментарий     Решение


Задача 57028

Тема:   [ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 8,9

Докажите, что если диагонали четырехугольника перпендикулярны, то проекции точки пересечения диагоналей на стороны являются вершинами вписанного четырехугольника.
Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 20]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .