ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Внутри квадрата расположены три окружности, каждая из которых касается внешним образом двух других, а также касается двух сторон квадрата. Докажите, что радиусы двух из данных окружностей одинаковы.

Вниз   Решение


Автор: Мухин Д.Г.

В прямоугольном треугольнике ABC с прямым углом C провели биссектрисы AK и BN, на которые опустили перпендикуляры CD и CE из вершины прямого угла. Докажите, что длина отрезка DE равна радиусу вписанной окружности.

ВверхВниз   Решение


Дан многочлен  x(x + 1)(x + 2)(x + 3).  Найти его наименьшее значение.

ВверхВниз   Решение


а) На каждом из полей верхней и нижней горизонтали шахматной доски 8×8 стоит по фишке: внизу – белые, вверху – чёрные. За один ход разрешается передвинуть любую фишку на соседнюю свободную клетку по вертикали или горизонтали. За какое наименьшее число ходов можно добиться того, чтобы все чёрные фишки стояли внизу, а белые – вверху?

б) Тот же вопрос для доски 7×7.

ВверхВниз   Решение


Таня взяла список из ста чисел 1, 2, 3, . . . , 100 и вычеркнула несколько из них. Оказалось, что какие бы два числа из оставшихся Таня ни взяла в качестве $a$ и $b$, уравнение $x^2 + ax + b=0$ имеет хотя бы один действительный корень. Какое наибольшее количество чисел могло остаться не вычеркнутым?

ВверхВниз   Решение


В треугольнике ABC проведена биссектриса AD. Пусть O, O1 и O2 – центры описанных окружностей треугольников ABC, ABD и ACD.
Докажите, что OO1 = OO2.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 56998

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 3+
Классы: 8,9

Вписанная окружность прямоугольного треугольника ABC касается гипотенузы AB в точке P, CH – высота треугольника ABC.
Докажите, что центр вписанной окружности треугольника ACH лежит на перпендикуляре, опущенном из точки P на AC.

Прислать комментарий     Решение

Задача 57000

Темы:   [ Вписанные и описанные окружности ]
[ Биссектриса угла ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведена биссектриса AD. Пусть O, O1 и O2 – центры описанных окружностей треугольников ABC, ABD и ACD.
Докажите, что OO1 = OO2.

Прислать комментарий     Решение

Задача 57001

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Признаки подобия ]
[ Средние величины ]
Сложность: 3+
Классы: 8,9

Треугольник, составленный:  а) из медиан;  б) из высот треугольника ABC, подобен треугольнику ABC.
Каким соотношением связаны длины сторон треугольника ABC?

Прислать комментарий     Решение

Задача 57003

Темы:   [ Частные случаи треугольников (прочее) ]
[ Прямая Эйлера и окружность девяти точек ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведены высоты BB1 и CC1. Докажите, что если  ∠A = 45°,  то B1C1 – диаметр окружности девяти точек треугольника ABC.

Прислать комментарий     Решение

Задача 56999

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Признаки равенства прямоугольных треугольников ]
[ Две касательные, проведенные из одной точки ]
[ Средняя линия трапеции ]
Сложность: 4-
Классы: 8,9

Вписанная окружность треугольника ABC касается сторон CA и AB в точках B1 и C1, а вневписанная окружность касается продолжения этих сторон в точках B2 и C2. Докажите, что середина стороны BC равноудалена от прямых B1C1 и B2C2.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .