|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан квадратный трёхчлен f(x) = x² + ax + b. Уравнение f(f(x)) = 0 имеет четыре различных действительных корня, сумма двух из которых равна –1. Докажите, что b ≤ – ¼. Каждая диагональ выпуклого пятиугольника параллельна одной из его сторон. Прямоугольник m×n разрезан на уголки: На высоте AH треугольника ABC взята точка M. Докажите, что AB² – AC² = MB² – MC². |
Страница: 1 [Всего задач: 4]
На высоте AH треугольника ABC взята точка M. Докажите, что AB² – AC² = MB² – MC².
Докажите, что треугольник ABC равнобедренный, если у него:
На сторонах AB, BC, CA правильного треугольника ABC
взяты точки P, Q, R так, что AP : PB = BQ : QC = CR : RA = 2 : 1.
Докажите, что биссектрисы треугольника пересекаются в одной точке.
Страница: 1 [Всего задач: 4] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|