ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Окружность с центром O проходит через концы гипотенузы прямоугольного треугольника и пересекает его катеты в точках M и K.
Докажите, что расстояние от точки O до прямой MK равно половине гипотенузы.

Вниз   Решение


Фигурки из четырёх клеток называются тет- рамино. Они бывают пяти видов (см. рис.). Существует ли такая фигура, что при любом выборе вида тетрамино эту фигуру можно составить, используя тетраминошки только выбранного вида? (Переворачивать тетраминошки можно.)

ВверхВниз   Решение


Автор: Фольклор

Посёлок построен в виде квадрата 3 квартала на 3 квартала (кварталы – квадраты со стороной b, всего 9 кварталов). Какой наименьший путь должен пройти асфальтоукладчик, чтобы заасфальтировать все улицы, если он начинает и кончает свой путь в угловой точке A? (Стороны квадрата – тоже улицы).

ВверхВниз   Решение


Дан треугольник ABC. Найдите все такие точки P, что площади треугольников ABP, BCP и ACP равны.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 56751

Темы:   [ Медиана делит площадь пополам ]
[ Подсчет двумя способами ]
Сложность: 2+
Классы: 8,9

Докажите, что медианы разбивают треугольник на шесть равновеликих треугольников.
Прислать комментарий     Решение


Задача 56752

Тема:   [ Медиана делит площадь пополам ]
Сложность: 3
Классы: 9

Дан треугольник ABC. Найдите все такие точки P, что площади треугольников ABP, BCP и ACP равны.
Прислать комментарий     Решение


Задача 56753

Тема:   [ Медиана делит площадь пополам ]
Сложность: 3
Классы: 9

Внутри данного треугольника ABC найдите такую точку O, что площади треугольников BOL, COM и AON равны (точки L, M и N лежат на сторонах AB, BC и CA, причем  OL || BC, OM || AC и  ON || AB; рис.).


Прислать комментарий     Решение

Задача 56754

Тема:   [ Медиана делит площадь пополам ]
Сложность: 3
Классы: 9

На продолжениях сторон треугольника ABC взяты точки A1, B1 и C1 так, что  $ \overrightarrow{AB_1}$ = 2$ \overrightarrow{AB}$, $ \overrightarrow{BC_1}$ = 2$ \overrightarrow{BC}$ и  $ \overrightarrow{CA_1}$ = 2$ \overrightarrow{AC}$. Найдите площадь треугольника A1B1C1, если известно, что площадь треугольника ABC равна S.
Прислать комментарий     Решение


Задача 56755

Тема:   [ Медиана делит площадь пополам ]
Сложность: 4
Классы: 9

На продолжениях сторон DA, AB, BC, CD выпуклого четырехугольника ABCD взяты точки  A1, B1, C1, D1 так, что  $ \overrightarrow{DA_1}$ = 2$ \overrightarrow{DA}$, $ \overrightarrow{AB_1}$ = 2$ \overrightarrow{AB}$, $ \overrightarrow{BC_1}$ = 2$ \overrightarrow{BC}$ и  $ \overrightarrow{CD_1}$ = 2$ \overrightarrow{CD}$. Найдите площадь получившегося четырехугольника  A1B1C1D1, если известно, что площадь четырехугольника ABCD равна S.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .