ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

3 равные окружности с центрами O1, O2, O3 пересекаются в данной точке. A1, A2, A3 — остальные точки пересечения. Доказать, что треугольники O1O2O3 и A1A2A3 равны.

Вниз   Решение


Две точки на плоскости несложно соединить тремя ломаными так, чтобы получилось два равных многоугольника (например, как на рис.). Соедините две точки четырьмя ломаными так, чтобы все три получившихся многоугольника были равны. (Ломаные несамопересекающиеся и не имеют общих точек, кроме концов.)

ВверхВниз   Решение


Даны два пересекающихся луча и BD. На этих лучах выбираются точки M и N (соответственно) так, что AM = BN. Найти положение точек M и N, при котором длина отрезка MN минимальна.

ВверхВниз   Решение


Докажите, что если окружность ортогональна двум окружностям пучка, то она ортогональна и всем остальным окружностям пучка.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 56732

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

а) Докажите, что пучок окружностей полностью задаётся парой окружностей.
б) Докажите, что пучок окружностей полностью задаётся одной окружностью и радикальной осью.
Прислать комментарий     Решение


Задача 56733

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Пусть f (x, y) = x2 + y2 + a1x + b1y + c1 и g(x, y) = x2 + y2 + a2x + b2y + c2. Докажите, что для любого вещественного $ \lambda$$ \ne$1 уравнение f - $ \lambda$g = 0 задаёт окружность из пучка окружностей, порождённого окружностями f = 0 и g = 0.
Прислать комментарий     Решение


Задача 56734

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Докажите, что любая окружность пучка либо пересекает радикальную ось в двух фиксированных точках (эллиптический пучок), либо касается радикальной оси в фиксированной точке (параболический пучок), либо не пересекает радикальную ось (гиперболический пучок).

Прислать комментарий     Решение


Задача 56735

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Докажите, что гиперболический пучок содержит две предельные точки, параболический — одну, а эллиптический — ни одной.
Прислать комментарий     Решение


Задача 56736

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Докажите, что если окружность ортогональна двум окружностям пучка, то она ортогональна и всем остальным окружностям пучка.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .