ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Автор: Фольклор

У Винни-Пуха пять друзей, у каждого из которых в домике есть горшочки с медом: у Тигры – 1, у Пятачка – 2, у Совы – 3, у Иа-Иа – 4, у Кролика – 5. Винни-Пух по очереди приходит в гости к каждому другу, съедает один горшочек меда, а остальные забирает с собой. К последнему домику он подошёл, неся 10 горшочков с медом. Чей домик Пух мог посетить первым?

Вниз   Решение


На центральном телеграфе стоят разменные автоматы, которые меняют 20 коп. на 15, 2, 2 и 1; 15 коп. на 10, 2, 2 и 1; 10 коп. на 3, 3, 2 и 2. Петя разменял 1 руб. 25 коп. серебром на медь. Вася, посмотрев на результат, сказал: "Я точно знаю, какие у тебя были монеты" и назвал их. Назовите и вы.

ВверхВниз   Решение


Некоторые из 20 металлических кубиков, одинаковых по размерам и внешнему виду, алюминиевые, остальные (Предполагается, что все кубики могут быть алюминиевыми, но они не могут быть все дюралевыми (если все кубики окажутся одного веса, то нельзя выяснить, алюминиевые они или дюралевые) — прим. ред.) дюралевые (более тяжёлые). Как при помощи 11 взвешиваний на весах с 2-мя чашечками без гирь определить число дюралевых кубиков?

ВверхВниз   Решение


Докажите, что любая окружность пучка либо пересекает радикальную ось в двух фиксированных точках (эллиптический пучок), либо касается радикальной оси в фиксированной точке (параболический пучок), либо не пересекает радикальную ось (гиперболический пучок).

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 56732

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

а) Докажите, что пучок окружностей полностью задаётся парой окружностей.
б) Докажите, что пучок окружностей полностью задаётся одной окружностью и радикальной осью.
Прислать комментарий     Решение


Задача 56733

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Пусть f (x, y) = x2 + y2 + a1x + b1y + c1 и g(x, y) = x2 + y2 + a2x + b2y + c2. Докажите, что для любого вещественного $ \lambda$$ \ne$1 уравнение f - $ \lambda$g = 0 задаёт окружность из пучка окружностей, порождённого окружностями f = 0 и g = 0.
Прислать комментарий     Решение


Задача 56734

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Докажите, что любая окружность пучка либо пересекает радикальную ось в двух фиксированных точках (эллиптический пучок), либо касается радикальной оси в фиксированной точке (параболический пучок), либо не пересекает радикальную ось (гиперболический пучок).

Прислать комментарий     Решение


Задача 56735

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Докажите, что гиперболический пучок содержит две предельные точки, параболический — одну, а эллиптический — ни одной.
Прислать комментарий     Решение


Задача 56736

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Докажите, что если окружность ортогональна двум окружностям пучка, то она ортогональна и всем остальным окружностям пучка.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .