ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Докажите тождество   (ax + by + cz)² + (bx + cy + az)² + (cx + ay + bz)² = (cx + by + az)² + (bx + ay + cz)² + (ax + cy + bz)².

Вниз   Решение


На столе лежат 6 яблок (не обязательно одинакового веса). Таня разложила их по 3 на две чашки весов, и весы остались в равновесии. А Саша разложил те же яблоки по-другому: 2 яблока на одну чашку и 4 на другую, и весы опять остались в равновесии. Докажите, что можно положить на одну чашку весов одно яблоко, а на другую два так, что весы останутся в равновесии.

ВверхВниз   Решение


Пароход шёл от Нижнего Новгорода до Астрахани 5 суток, а обратно – 7 суток. Сколько дней плывут плоты от Нижнего Новгорода до Астрахани?

ВверхВниз   Решение


Автор: Фольклор

P(х) – многочлен с целыми коэффициентами. Известно, что числа 1 и 2 являются его корнями. Докажите, что найдётся коэффициент, который меньше –1.

ВверхВниз   Решение


Продолжение биссектрисы AD остроугольного треугольника ABC пересекает описанную окружность в точке E. Из точки D на стороны AB и AC опущены перпендикуляры DP и DQ. Докажите, что  SABC = SAPEQ.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 56609

Тема:   [ Биссектриса делит дугу пополам ]
Сложность: 3
Классы: 8,9

Известно, что в некотором треугольнике медиана, биссектриса и высота, проведенные из вершины C, делят угол на четыре равные части. Найдите углы этого треугольника.
Прислать комментарий     Решение


Задача 56610

Тема:   [ Биссектриса делит дугу пополам ]
Сложность: 3
Классы: 8,9

Докажите, что в любом треугольнике ABC биссектриса AE лежит между медианой AM и высотой AH.
Прислать комментарий     Решение


Задача 56611

Тема:   [ Биссектриса делит дугу пополам ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC. На его стороне AB выбирается точка P и через нее проводятся прямые PM и PN, параллельные AC и BC соответственно (точки M и N лежат на сторонах BC и AC); Q — точка пересечения описанных окружностей треугольников APN и BPM. Докажите, что все прямые PQ проходят через фиксированную точку.
Прислать комментарий     Решение


Задача 56612

Тема:   [ Биссектриса делит дугу пополам ]
Сложность: 4
Классы: 8,9

Продолжение биссектрисы AD остроугольного треугольника ABC пересекает описанную окружность в точке E. Из точки D на стороны AB и AC опущены перпендикуляры DP и DQ. Докажите, что  SABC = SAPEQ.
Прислать комментарий     Решение


Задача 52422

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Биссектриса делит дугу пополам ]
Сложность: 4+
Классы: 8,9

В треугольнике ABC стороны AC и BC не равны. Докажите, что биссектриса угла C делит пополам угол между медианой и высотой, проведёнными из вершины C, тогда и только тогда, когда $ \angle$C = 90o.

Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .