|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Прямоугольник 1×3 будем называть триминошкой. Петя и Вася независимо друг от друга разбивают доску 20×21 на триминошки. Затем они сравнивают полученные разбиения, и Петя платит Васе столько рублей, сколько триминошек в этих двух разбиениях совпали (оказались на одинаковых позициях). Какую наибольшую сумму выигрыша может гарантировать себе Вася независимо от действий Пети? Как расставить числа 5/177, 51/19, 95/9 и знаки арифметических операций "+", "-", "*" и "/" между ними так, чтобы полученное число равнялось 2006? На наибольшей стороне AB треугольника ABC взяли такие точки P и Q, что AQ = AC, BP = BC. Прямоугольник размером 2n×2m замостили костями домино 1×2. Докажите, что на этот слой костей можно положить второй слой так, что ни одна кость второго слоя не совпадает с костью первого слоя. На стороне BC треугольника ABC взята точка A1 так, что BA1 : A1C = 2 : 1. В каком отношении медиана CC1 делит отрезок AA1? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 85]
В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Докажите, что A1C·BC = B1C·AC.
В прямоугольном треугольнике ABC с прямым углом C проведена высота CH. Докажите, что AC² = AB·AH и CH² = AH·BH.
Докажите, что медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2 : 1, считая от вершины.
На стороне BC треугольника ABC взята точка A1 так, что BA1 : A1C = 2 : 1. В каком отношении медиана CC1 делит отрезок AA1?
В треугольник с основанием a и высотой h вписан квадрат так, что две его вершины лежат на основании треугольника, а две другие – на боковых сторонах.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 85] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|