ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Пусть m и n – целые числа. Докажите, что  mn(m + n)  – чётное число.

Вниз   Решение


Автор: Грибок С.

Фокуснику завязывают глаза, а зритель выкладывает в ряд N одинаковых монет, сам выбирая, какие – орлом вверх, а какие – решкой. Ассистент фокусника просит зрителя написать на листе бумаги любое целое число от 1 до N и показать его всем присутствующим. Увидев число, ассистент указывает зрителю на одну из монет ряда и просит перевернуть её. Затем фокуснику развязывают глаза, он смотрит на ряд монет и безошибочно определяет написанное зрителем число.
  a) Докажите, что если у фокусника с ассистентом есть способы, позволяющие фокуснику гарантированно отгадывать число для  N = a  и для  N = b,  то есть способ и для  N = ab.
  б) Найдите все значения N, для которых у фокусника с ассистентом есть такой способ.

ВверхВниз   Решение


Дан набор из нескольких гирек, на каждой написана масса. Известно, что набор масс и набор надписей одинаковы, но возможно некоторые надписи перепутаны. Весы представляют из себя горизонтальный отрезок, закреплённый за середину. При взвешивании гирьки прикрепляются в произвольные точки отрезка, после чего весы остаются в равновесии либо отклоняются в ту или иную сторону. Всегда ли удастся за одно взвешивание проверить, все надписи верны или нет? (Весы будут в равновесии, если сумма моментов гирь справа от середины равна сумме моментов гирь слева; иначе отклонятся в сторону, где сумма больше. Моментом гири называется произведение ms массы гири m на расстояние s он нее до середины отрезка.)

ВверхВниз   Решение


Докажите, что противоположные стороны шестиугольника, образованного сторонами треугольника и касательными к его вписанной окружности, параллельными сторонам, равны между собой.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 26]      



Задача 57833  (#16.000.1)

Тема:   [ Центральная симметрия (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что при центральной симметрии окружность переходит в окружность.
Прислать комментарий     Решение


Задача 55706  (#16.000.2)

Темы:   [ Свойства симметрии и центра симметрии ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Докажите, что четырёхугольник, имеющий центр симметрии,— параллелограмм.

Прислать комментарий     Решение


Задача 57835  (#16.000.3)

Тема:   [ Центральная симметрия (прочее) ]
Сложность: 2-
Классы: 9

Противоположные стороны выпуклого шестиугольника попарно равны и параллельны. Докажите, что он имеет центр симметрии.
Прислать комментарий     Решение


Задача 57836  (#16.000.4)

Тема:   [ Центральная симметрия (прочее) ]
Сложность: 2-
Классы: 9

Дан параллелограмм ABCD и точка M. Через точки A, B, C и D проведены прямые, параллельные прямым MC, MD, MA и MB соответственно. Докажите, что они пересекаются в одной точке.
Прислать комментарий     Решение


Задача 55710  (#16.000.5)

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Шестиугольники ]
Сложность: 4-
Классы: 8,9

Докажите, что противоположные стороны шестиугольника, образованного сторонами треугольника и касательными к его вписанной окружности, параллельными сторонам, равны между собой.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 >> [Всего задач: 26]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .