ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На доске выписаны числа 1, 2, ..., 20. Разрешается стереть любые два числа a и b и заменить их на число  ab + a + b.
Какое число может остаться на доске после 19 таких операций?

Вниз   Решение


На плоскости лежат три шайбы A, B и C. Хоккеист бьёт по одной из шайб так, чтобы она прошла между двумя другими и остановилась в некоторой точке. Могут ли все шайбы вернуться на свои места после25 ударов?

ВверхВниз   Решение


Докажите, что биссектрисы треугольника пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 56828

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ ГМТ - прямая или отрезок ]
Сложность: 2-
Классы: 7,8

На высоте AH треугольника ABC взята точка M. Докажите, что  AB² – AC² = MB² – MC².

Прислать комментарий     Решение

Задача 53320

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Равные треугольники. Признаки равенства ]
Сложность: 2+
Классы: 8,9

Докажите, что треугольник ABC равнобедренный, если у него:
  а) медиана BD является высотой;
  б) высота BD является биссектрисой.

Прислать комментарий     Решение

Задача 56829

Темы:   [ Правильный (равносторонний) треугольник ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3-
Классы: 7,8

На сторонах  AB, BC, CA правильного треугольника ABC взяты точки P, Q, R так, что  AP : PB = BQ : QC = CR : RA = 2 : 1.
Докажите, что стороны треугольника PQR перпендикулярны сторонам треугольника ABC.

Прислать комментарий     Решение

Задача 53412

Темы:   [ Свойства биссектрис, конкуррентность ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8,9

Докажите, что биссектрисы треугольника пересекаются в одной точке.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .