|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Имеется таблица M × N, в каждой ячейке которой записано либо целое число, либо арифметическая формула. В формулах могут присутствовать целые числа, знаки *, /, +, -, (, ), пробелы и ссылки на значения из других ячеек таблицы, записываемые в виде {НомерCтроки, НомерCтолбца} (например, {1,10}). Требуется вычислить значения во всех ячейках заданной таблицы. Входные данные: В первой строке входного файла записаны целые числа M и N (1 ≤ M, N ≤ 20). В каждой из последующих M строк содержится описание очередной строки таблицы. Описание состоит из целых чисел и арифметических формул, разделенных символами | (ASCII-код 124). Все числа принадлежат диапазону [-32768, 32767], а длина каждой формулы не превышает 100 символов. Выходные данные: Выведите в выходной файл значения всех ячеек таблицы. Значения ячеек каждой строки таблицы должны быть записаны через пробел в отдельной строке выходного файла. Все значения следует выводить с точностью до двух знаков после десятичной точки. Если значение ячейки вычислить невозможно, вместо него следует вывести символ - (ASCII-код 45). Пример входного файла 2 3 1 | {1, 1 }*10 +3 | -{1,2}/{2,2} {2,3} | 0 | {2,1} Пример выходного файла 1.00 13.00 - - 0.00 - Три последовательные стороны основания четырёхугольной пирамиды равны 5, 7 и 8. Найдите четвёртую сторону основания, если известно, что двугранные углы при основании равны. Шеренга солдат называется неправильной, если никакие три подряд стоящих солдата не стоят по росту (ни в порядке возрастания, ни в порядке убывания). Сколько неправильных шеренг можно построить из n солдат разного роста, если а) n = 4; б) n = 5? Известно, что в выпуклом n-угольнике (n > 3) никакие три диагонали не проходят через одну точку. |
Страница: 1 2 >> [Всего задач: 6]
Известно, что в выпуклом n-угольнике (n > 3) никакие три диагонали не проходят через одну точку.
На окружности даны точки A1, A2,..., A16. Построим все возможные выпуклые многоугольники, вершины которых находятся среди точек A1, A2,..., A16. Разобьём эти многоугольники на две группы. В первую группу будут входить все многоугольники, у которых A1 является вершиной. Во вторую группу входят все многоугольники, у которых A1 в число вершин не входит. В какой группе больше многоугольников?
На плоскости дано n > 4 точек, никакие три из которых не лежат на одной прямой.
Страница: 1 2 >> [Всего задач: 6] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|