|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Положительные числа a, b, c и d удовлетворяют условию 2(a + b + c + d) ≥ abcd. Докажите, что a² + b² + c² + d² ≥ abcd. Пусть x1, x2 — корни квадратного уравнения ax2 + bx + c = 0 и Sn = x1n + x2n ( n
aSm + bSm - 1 + cSm - 2 = 0, (m
B основании четырёхугольной пирамиды SABCD лежит четырёхугольник ABCD, диагонали которого перпендикулярны и пересекаются в точке P, и SP является высотой пирамиды. Докажите, что проекции точки P на боковые грани пирамиды лежат на одной окружности. Квадратная площадь размером 100×100 выложена квадратными плитами 1×1 четырёх цветов: белого, красного, чёрного и серого – так, что никакие две плиты одинакового цвета не соприкасаются друг с другом (то есть не имеют общей стороны или вершины). Сколько может быть красных плит? |
Страница: << 1 2 3 4 >> [Всего задач: 18]
Известно, что a + b + c = 5 и ab + bc + ac = 5. Чему может равняться a² + b² + c²?
В узлах клетчатой плоскости отмечено пять точек. Доказать, что есть две из них, середина отрезка между которыми тоже попадает в узел.
Найдите сумму углов при вершинах самопересекающейся пятиконечной звезды.
Квадратная площадь размером 100×100 выложена квадратными плитами 1×1 четырёх цветов: белого, красного, чёрного и серого – так, что никакие две плиты одинакового цвета не соприкасаются друг с другом (то есть не имеют общей стороны или вершины). Сколько может быть красных плит?
Страница: << 1 2 3 4 >> [Всего задач: 18] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|