ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В равнобедренном треугольнике ABC  (AB = AC)  угол A равен α. На стороне AB взята точка D так, что  AD = AB/n.  Найдите сумму  n – 1  углов, под которыми виден отрезок AD из точек, делящих сторону BC на n равных частей:
  а) при  n = 3;
  б) при произвольном n.

Вниз   Решение


Квадратный лист клетчатой бумаги разбит на меньшие квадраты отрезками, идущими по сторонам клеток.
Докажите, что сумма длин этих отрезков делится на 4. (Длина стороны клетки равна 1.)

ВверхВниз   Решение


Разрежьте крест, составленный из пяти одинаковых квадратов, на три многоугольника, равных по площади и периметру.

ВверхВниз   Решение


Имеется бесконечная арифметическая прогрессия с натуральными членами. Доказать, что найдётся член, в котором есть 100 девяток подряд.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



Задача 31367  (#23)

Темы:   [ Шахматная раскраска ]
[ Обходы многогранников ]
Сложность: 3
Классы: 6,7,8,9

В центре куба сидит жук. Доказать, что он, переползая через ребра, не сможет обойти все кубики по одному разу.

Прислать комментарий     Решение


Задача 31368  (#24)

Тема:   [ Отношение порядка ]
Сложность: 2+
Классы: 5,6,7,8

В ряд выписаны числа от 1 до 9999. Как вычеркнуть из этой записи 100 цифр так, чтобы оставшееся число было a) максимальным b) минимальным?

Прислать комментарий     Решение


Задача 31369  (#25)

Темы:   [ Индукция (прочее) ]
[ Таблицы и турниры (прочее) ]
Сложность: 3+
Классы: 6,7,8

В прямоугольнике 3×n стоят фишки трёх цветов, по n штук каждого цвета.
Доказать, что можно переставить фишки в каждой строке так, чтобы в каждом столбце были фишки всех цветов.

Прислать комментарий     Решение

Задача 31371  (#27)

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 8,9,10

Сколько решений в натуральных числах имеет уравнение   [x/10] = [x/11] + 1?

Прислать комментарий     Решение

Задача 31372  (#28)

Темы:   [ Арифметическая прогрессия ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 6,7,8

Имеется бесконечная арифметическая прогрессия с натуральными членами. Доказать, что найдётся член, в котором есть 100 девяток подряд.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .