|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Имеются два сосуда. В них разлили 1 л воды. Из первого сосуда переливают половину воды во второй, затем из второго переливают половину оказавшейся в нем воды в первый, затем из первого сосуда переливают половину оказавшейся в нем воды во второй и т. д. Докажите, что независимо от того, сколько воды было сначала в каждом из сосудов, после 100 переливаний в них будет Функция f(x) определена для всех x,
кроме 1, и удовлетворяет равенству: Произведение пяти различных целых чисел равно 2022. Чему может равняться их сумма? Если ответов несколько — укажите их все. На доске написаны 10 единиц и 10 двоек. За ход разрешается стереть две любые цифры и, если они были одинаковыми, написать двойку, а если разными – единицу. Если последняя оставшаяся на доске цифра – единица, то выиграл первый игрок, если двойка – то второй. Приведите пример вписанного четырехугольника с попарно различными целочисленными длинами сторон, у которого длины диагоналей, площадь и радиус описанной окружности — целые числа (Брахмагупта). Вставьте вместо каждой звездочки цифру так, чтобы произведение трех десятичных дробей равнялось натуральному числу. Использовать ноль нельзя, зато остальные цифры могут повторяться. $${\ast}{,}{\ast} \cdot {\ast}{,}{\ast} \cdot {\ast}{,}{\ast} = {\ast}$$ В вершинах правильного 1983-угольника расставлены числа 1, 2, ..., 1983. Любая его ось симметрии делит числа, не лежащие на ней, на два множества. Назовём расстановку "хорошей" относительно данной оси симметрии, если каждое число одного множества больше симметричного ему числа. Существует ли расстановка, являющаяся "хорошей" относительно любой оси симметрии? Сколькими способами можно выложить в ряд пять красных, пять синих и пять зелёных шаров так, чтобы никакие два синих шара не лежали рядом? |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 55]
Сколькими способами можно расположить в девяти лузах семь белых и два чёрных шара? Часть луз может быть пустой, а лузы считаются различными.
Сколькими способами три человека могут разделить между собой шесть одинаковых яблок, один апельсин, одну сливу и один мандарин?
Сколькими способами четыре чёрных шара, четыре белых шара и четыре синих шара можно разложить в шесть различных ящиков?
Общество из n членов выбирает из своего состава одного представителя.
Сколькими способами можно выложить в ряд пять красных, пять синих и пять зелёных шаров так, чтобы никакие два синих шара не лежали рядом?
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 55] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|