ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Докажите, что центр описанной окружности прямоугольного треугольника совпадает с серединой гипотенузы.

Вниз   Решение


Около данного круга опишите равнобедренный прямоугольный треугольник.

ВверхВниз   Решение


В сектор AOB с радиусом R и углом 90o вписана окружность, касающаяся отрезков OA, OB и дуги AB. Найдите радиус окружности.

ВверхВниз   Решение


Решить систему пятнадцати уравнений с пятнадцатью неизвестными:   x1x2 = x2x3 = ... = x14x15 = x15x1 = 1.

ВверхВниз   Решение


Игра начинается с числа 1. За ход разрешается умножить имеющееся число на любое натуральное число от 2 до 9. Выигрывает тот, кто первым получит число, большее 1000.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 [Всего задач: 38]      



Задача 30468  (#036)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3+
Классы: 8,9

Игра начинается с числа 1. За ход разрешается умножить имеющееся число на любое натуральное число от 2 до 9. Выигрывает тот, кто первым получит число, большее 1000.

Прислать комментарий     Решение


Задача 30469  (#037)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3+
Классы: 8,9

Игра начинается с числа 2. За ход разрешается прибавить к имеющемуся числу любое натуральное число, меньшее его. Выигрывает тот, кто получит 1000.

Прислать комментарий     Решение


Задача 30470  (#038)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 4
Классы: 9,10

Игра начинается с числа 1000. За ход разрешается вычесть из имеющегося числа любое, не превосходящее его, натуральное число, являющееся степенью двойки (1 = 20). Выигрывает тот, кто получит ноль.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .