ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Биссектрисы внутреннего и внешнего углов при вершине A треугольника ABC пересекают прямую BC в точках P и Q.
Докажите, что окружность, построенная на отрезке PQ как на диаметре, проходит через точку A.

Вниз   Решение


Доказать, что любая ось симметрии 45-угольника проходит через его вершину.

ВверхВниз   Решение


Окружности ω1 и ω2 касаются внешним образом в точке P. Через центр ω1 проведена прямая l1, касающаяся ω2. Аналогично прямая l2 касается ω1 и проходит через центр ω2. Оказалось, что прямые l1 и l2 непараллельны. Докажите, что точка P лежит на биссектрисе одного из углов, образованных l1 и l2.

ВверхВниз   Решение


а) Имеется две кучки по 7 камней. За ход разрешается взять один камень из любой кучки или по камню из каждой кучки. Проигрывает тот, кто не может сделать ход.

б) Кроме ходов, допустимых в пункте а), разрешается перекладывать один камень из первой кучки во вторую. В остальном правила те же.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



Задача 30463  (#031)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 4
Классы: 8,9

Имеется две кучки камней: в первой - 7 камней, во второй - 5. За ход разрешается брать любое количество камней из одной кучки или поровну камней из обеих кучек. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение


Задача 30464  (#032)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 4
Классы: 8,9

Конь стоит на поле a1. За ход разрешается передвигать коня на две клетки вправо и одну клетку вверх или вниз, или на две вверх и на одну вправо или влево. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение

Задача 30465  (#033)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 4
Классы: 8,9,10

а) Имеется две кучки по 7 камней. За ход разрешается взять один камень из любой кучки или по камню из каждой кучки. Проигрывает тот, кто не может сделать ход.

б) Кроме ходов, допустимых в пункте а), разрешается перекладывать один камень из первой кучки во вторую. В остальном правила те же.

Прислать комментарий     Решение


Задача 30466  (#034)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 4
Классы: 8,9,10

Имеется две кучки по 11 спичек. За ход можно взять две спички из одной кучки и одну из другой. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение


Задача 30467  (#035)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3+
Классы: 6,7,8

Игра начинается с числа 0. За ход разрешается прибавить к имеющемуся числу любое натуральное число от 1 до 9. Выигрывает тот, кто получит число 100.

Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .