ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Доказать, что любая ось симметрии 45-угольника проходит через его вершину.

Вниз   Решение


Найдите все такие тройки простых чисел p, q, r, что четвёртая степень каждого из них, уменьшенная на 1, делится на произведение двух остальных.

ВверхВниз   Решение


Окружности ω1 и ω2 касаются внешним образом в точке P. Через центр ω1 проведена прямая l1, касающаяся ω2. Аналогично прямая l2 касается ω1 и проходит через центр ω2. Оказалось, что прямые l1 и l2 непараллельны. Докажите, что точка P лежит на биссектрисе одного из углов, образованных l1 и l2.

ВверхВниз   Решение


На плоскости расположены 4 прямые общего положения. Каждым трем прямым поставим в соответствие окружность, проходящую через точки их пересечения. Докажите, что 4 полученных окружности проходят через одну точку.

ВверхВниз   Решение


Точки D и E делят стороны AC и AB правильного треугольника ABC в отношениях  AD : DC = BE : EA = 1 : 2. Прямые BD и CE пересекаются в точке O. Докажите, что  $ \angle$AOC = 90o.

ВверхВниз   Решение


а) Имеется две кучки по 7 камней. За ход разрешается взять один камень из любой кучки или по камню из каждой кучки. Проигрывает тот, кто не может сделать ход.

б) Кроме ходов, допустимых в пункте а), разрешается перекладывать один камень из первой кучки во вторую. В остальном правила те же.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



Задача 30463  (#031)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 4
Классы: 8,9

Имеется две кучки камней: в первой - 7 камней, во второй - 5. За ход разрешается брать любое количество камней из одной кучки или поровну камней из обеих кучек. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение


Задача 30464  (#032)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 4
Классы: 8,9

Конь стоит на поле a1. За ход разрешается передвигать коня на две клетки вправо и одну клетку вверх или вниз, или на две вверх и на одну вправо или влево. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение

Задача 30465  (#033)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 4
Классы: 8,9,10

а) Имеется две кучки по 7 камней. За ход разрешается взять один камень из любой кучки или по камню из каждой кучки. Проигрывает тот, кто не может сделать ход.

б) Кроме ходов, допустимых в пункте а), разрешается перекладывать один камень из первой кучки во вторую. В остальном правила те же.

Прислать комментарий     Решение


Задача 30466  (#034)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 4
Классы: 8,9,10

Имеется две кучки по 11 спичек. За ход можно взять две спички из одной кучки и одну из другой. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение


Задача 30467  (#035)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3+
Классы: 6,7,8

Игра начинается с числа 0. За ход разрешается прибавить к имеющемуся числу любое натуральное число от 1 до 9. Выигрывает тот, кто получит число 100.

Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .