|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Задана квадратная доска размером N ×N. Известно, что на ней играли в интеллектуальную игру, вследствие чего клеточки оказались окрашенными в белый, чёрный и зеленый цвета. Раскраска клеточек может быть разной (ведь это интеллектуальная игра!), но все клеточки самого верхнего ряда белые, а самого нижнего - чёрные.Чтобы выявить победителя, необходимо подсчитать количество клеточек в белой и количество клеточек в черной области. Белая область - это как можно большая (по количеству клеточек) часть квадрата, которая ограничена сверху верхней стороной квадрата, а с других сторон - непрерывной границей, которая проходит только через белые клеточки и никакая клеточка не встречается больше одного раза. Белая граница представляет собой последовательность белых соседних клеточек (соседние клеточки имеют общую сторону). Концами этой границы должны быть левая верхняя и правая верхняя клеточки квадрата. Определение чёрной области выглядит аналогично: она ограничена снизу нижней стороной квадрата, с других сторон - чёрной границей, которая проходит только через чёрные клеточки, а концы этой границы - левая нижняя и правая нижняя клеточки квадрата. Задание Напишите программу SCORE, которая по раскраске квадрата находит количество клеточек в белой и чёрной областях.Входные данные Первая строка входного файла SCORE.DAT содержит единственное целое число N - размер квадрата (5≤N?250). Каждая из следующих N строк содержит по N символов "G", "W" или "B" (записанных без пробелов), которые обозначают зелёный, белый и чёрный цвет, соответственно.Выходные данные Первая строка выходного файла SCORE.SOL должна содержать количество клеточек в белой области, а вторая строка - количество клеточек в чёрной области.Пример входных и выходных данных
Вид белой и чёрной областей для примера из условия представлен на рисунке. Докажите, что число, имеющее нечётное число делителей, является точным квадратом. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]
На сколько нулей оканчивается число 100!?
Докажите, что число, имеющее нечётное число делителей, является точным квадратом.
Вася написал на доске пример на умножение двух двузначных чисел, а затем заменил в нем все цифры на буквы, причём одинаковые цифры – на одинаковые буквы, а разные – на разные. В итоге у него получилось АБ×ВГ = ДДЕЕ. Докажите, что он где-то ошибся.
Может ли число, записываемое при помощи 100 нулей, 100 единиц и 100 двоек, быть точным квадратом?
Целые числа a и b таковы, что 56a = 65b. Докажите, что   a + b – составное число.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|