|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В треугольник вписана окружность, и точки касания её со сторонами треугольника соединены между собой. В полученный таким образом треугольник вписана новая окружность, точки касания которой со сторонами являются вершинами третьего треугольника, имеющего те же углы, что и первоначальный треугольник. Найти эти углы. В каждой клетке клетчатого квадрата 7×7 стоит по числу. Сумма чисел в каждом квадратике 2×2 и 3×3 равна 0. |
Страница: << 1 2 [Всего задач: 8]
В каждой клетке клетчатого квадрата 7×7 стоит по числу. Сумма чисел в каждом квадратике 2×2 и 3×3 равна 0.
Верно ли, что в вершинах любого треугольника можно расставить положительные числа так, чтобы сумма чисел в концах каждой стороны треугольника равнялась длине этой стороны?
Докажите, что можно на каждом ребре произвольного тетраэдра записать по неотрицательному числу так, чтобы сумма чисел на сторонах каждой грани численно равнялась её площади.
Страница: << 1 2 [Всего задач: 8] |
||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|