|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Классы:
|
||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что если 0 < x < 1 и В городе Цветочном n площадей и m улиц (m ≥ n + 1). Каждая улица соединяет две площади и не проходит через другие площади. По существующей в городе традиции улица может называться либо Синей, либо Красной. Ежегодно в городе происходит переименование: выбирается площадь и переименовываются все выходящие из неё улицы. Докажите, что можно назвать улицы так, что переименованиями нельзя добиться одинаковых названий у всех улиц города. К двум окружностям w1 и w2, пересекающимся в точках A и B, проведена их общая касательная CD (C и D – точки касания соответственно, точка B ближе к прямой CD, чем A). Прямая, проходящая через A, вторично пересекает w1 и w2 в точках и L соответственно (A лежит между K и L ). Прямые KC и LD пересекаются в точке P. Докажите, что PB – симедиана треугольника KPL (прямая, симметричная медиане относительно биссектрисы). |
Страница: << 1 2 3 [Всего задач: 12]
Докажите, что у любого выпуклого многогранника найдутся три ребра, из которых можно составить треугольник.
К двум окружностям w1 и w2, пересекающимся в точках A и B, проведена их общая касательная CD (C и D – точки касания соответственно, точка B ближе к прямой CD, чем A). Прямая, проходящая через A, вторично пересекает w1 и w2 в точках и L соответственно (A лежит между K и L ). Прямые KC и LD пересекаются в точке P. Докажите, что PB – симедиана треугольника KPL (прямая, симметричная медиане относительно биссектрисы).
Страница: << 1 2 3 [Всего задач: 12] |
|||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|