|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи а) Точки A, B и C лежат на одной прямой, а точки A1, B1 и C1 – на другой. Докажите, что если AB1 || BA1 и AC1 || CA1, то BC1 || CB1. б) Точки A, B и C лежат на одной прямой, а точки A1, B1 и C1 таковы, что
AB1 || BA1, AC1 || CA1 и BC1 || CB1. Для различных положительных чисел а и b выполняется равенство |
Страница: << 1 2 3 >> [Всего задач: 15]
Найдите наименьшее натуральное n, при котором число А = n³ + 12n² + 15n + 180 делится на 23.
Пятеро друзей скинулись на покупку. Могло ли оказаться так, что каждые два из них внесли менее одной трети общей стоимости?
Существует ли прямоугольный треугольник, в котором две медианы перпендикулярны?
Какое наибольшее число белых и чёрных фишек можно расставить на шахматной доске так, чтобы на каждой горизонтали и на каждой вертикали белых фишек было ровно в два раза больше, чем чёрных?
Для различных положительных чисел а и b выполняется равенство
Страница: << 1 2 3 >> [Всего задач: 15] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|