|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи При игре в преферанс каждому из трёх игроков раздают по 10 карт, а две карты кладут в прикуп. Сколько различных раскладов возможно в этой игре? (Считаются возможные раздачи без учета того, что каждые 10 карт достаются конкретному игроку.) Коля и его сестра Маша пошли в гости. Пройдя четверть пути, Коля вспомнил, что они забыли дома подарок и повернул обратно, а Маша пошла дальше. Маша пришла в гости через 20 минут после выхода из дома. На сколько минут позже пришёл в гости Коля, если известно, что они все время шли с одинаковыми скоростями? На 99 карточках пишутся числа 1, 2, 3, ..., 99. Затем карточки перемешиваются, раскладываются чистыми сторонами вверх и на чистых сторонах снова пишутся числа 1, 2, 3, 4, ..., 99. Для каждой карточки числа, стоящие на ней, складываются и 99 полученных сумм перемножаются. Доказать, что в результате получится чётное число. Дан равнобедренный треугольник ABC с основанием AC. Доказать, что конец D отрезка BD, выходящего из вершины B, параллельного основанию и равного боковой стороне треугольника, является центром вневписанной окружности треугольника. |
Страница: 1 2 >> [Всего задач: 7]
В треугольнике ABC высота BD образует со стороной BC угол в 45°. Считается, что прямая BD, содержащая высоту, уже построена. Как одним движением циркуля построить ортоцентр треугольника ABC?
Дан равнобедренный треугольник ABC с основанием AC. Доказать, что конец D отрезка BD, выходящего из вершины B, параллельного основанию и равного боковой стороне треугольника, является центром вневписанной окружности треугольника.
Дан квадрат ABCD. На стороне AD внутрь квадрата построен равносторонний треугольник ADE. Диагональ AC пересекает сторону ED этого треугольника в точке F. Докажите, что CE = CF.
Даны две окружности, касающиеся друг друга внутренним образом в точке A); из точки B большей окружности, диаметрально противоположной точке A, проведена касательная BC к меньшей окружности. Прямые BC и AC пересекает большую окружность в точках D и E соответственно. Докажите, что дуги DE и BE равны.
Диагонали AC и BD равнобедренной трапеции ABCD пересекаются в точке O; известно также, что в трапецию можно вписать окружность.
Страница: 1 2 >> [Всего задач: 7] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|