|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дана последовательность an = 1 + 2n + ... + 5n. Существуют ли пять идущих подряд её членов, кратных 2005? Бесконечную клетчатую доску раскрасили шахматным образом, и в каждую белую клетку вписали по отличному от нуля целому числу. После этого для каждой чёрной клетки посчитали разность: произведение того, что написано в соседних по горизонтали клетках, минус произведение того, что написано в соседних по вертикали. Могут ли все такие разности равняться 1? Все натуральные числа поделены на хорошие и плохие. Известно, что если число m хорошее, то и число m + 6 тоже хорошее, а если число n плохое, то и число n + 15 тоже плохое. Может ли среди первых 2000 чисел быть ровно 1000 хороших? Докажите неравенство: Известно, что при любом положительном значении р все корни уравнения (с переменной x ) ах2-3х+р = 0 положительны. Докажите, что а = 0. |
Страница: 1 2 >> [Всего задач: 6]
Какое из оставшихся чисел стоит на сотом месте?
Существуют ли нечётные целые числа х, у и z, удовлетворяющие равенству (x + y)² + (x + z)² = (y + z)²?
Страница: 1 2 >> [Всего задач: 6] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|