ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Дана последовательность  an = 1 + 2n + ... + 5n.  Существуют ли пять идущих подряд её членов, кратных 2005?

Вниз   Решение


Бесконечную клетчатую доску раскрасили шахматным образом, и в каждую белую клетку вписали по отличному от нуля целому числу. После этого для каждой чёрной клетки посчитали разность: произведение того, что написано в соседних по горизонтали клетках, минус произведение того, что написано в соседних по вертикали. Могут ли все такие разности равняться 1?

ВверхВниз   Решение


Все натуральные числа поделены на хорошие и плохие. Известно, что если число m хорошее, то и число  m + 6  тоже хорошее, а если число n плохое, то и число  n + 15  тоже плохое. Может ли среди первых 2000 чисел быть ровно 1000 хороших?

ВверхВниз   Решение


Докажите неравенство:  
Значения переменных считаются положительными.

ВверхВниз   Решение


Известно, что при любом положительном значении р все корни уравнения (с переменной x ) ах2-3х+р = 0 положительны. Докажите, что а = 0.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 115450  (#06.4.10.1)

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Классическая комбинаторика (прочее) ]
[ Формула включения-исключения ]
Сложность: 3
Классы: 7,8,9,10

Из ряда натуральных чисел вычеркнули все числа, которые являются квадратами или кубами целых чисел.
Какое из оставшихся чисел стоит на сотом месте?

Прислать комментарий     Решение

Задача 115451  (#06.4.10.2)

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Неравенство треугольника (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 3-
Классы: 8,9,10

Пусть α , β , γ и δ  — градусные меры углов некоторого выпуклого четырехугольника. Всегда ли из этих четырех чисел можно выбрать три числа так, чтобы они выражали длины сторон некоторого треугольника (например, в метрах)?
Прислать комментарий     Решение


Задача 115452  (#06.4.10.3)

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 2
Классы: 10

Известно, что при любом положительном значении р все корни уравнения (с переменной x ) ах2-3х+р = 0 положительны. Докажите, что а = 0.
Прислать комментарий     Решение


Задача 115453  (#06.4.10.4)

Темы:   [ Четность и нечетность ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 7,8,9,10

Существуют ли нечётные целые числа х, у и z, удовлетворяющие равенству  (x + y)² + (x + z)² = (y + z)²?

Прислать комментарий     Решение

Задача 115454  (#06.4.10.5)

Темы:   [ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9,10

В течение 92 дней авиакомпания ежедневно выполняла по десять рейсов. За день каждый самолет выполнял не более одного рейса. Известно, что для любой пары дней найдется один и только один самолет, летавший в оба эти дня. Докажите, что есть самолет, летавший каждый день.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .