|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Этапы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Найдите все простые числа p и q, для которых выполняется равенство p² – 2q² = 1. В круге проведены два перпендикулярных диаметра, т. е. четыре радиуса, а затем построены четыре круга, диаметрами которых служат эти радиусы. Докажите, что суммарная площадь попарно общих частей этих кругов равна площади части исходного круга, лежащей вне рассматриваемых четырех кругов (рис.). В выпуклом четырёхугольнике семь из восьми отрезков, соединяющих вершины с серединами противоположных сторон, равны. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 64]
В выпуклом четырёхугольнике семь из восьми отрезков, соединяющих вершины с серединами противоположных сторон, равны.
Существуют ли такие простые числа p1, p2, ..., p2007, что
На шахматной доске расставлены во всех клетках 32 белых и 32 черных пешки. Пешка может бить пешки противоположного цвета, делая ход по диагонали на одну клетку и становясь на место взятой пешки (белые пешки могут бить только вправо-вверх и влево-вверх, а чёрные – только влево-вниз и вправо-вниз). Другим образом пешки ходить не могут. Какое наименьшее количество пешек может остаться на доске?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 64] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|