|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Два маляра красят забор, огораживающий дачные участки. Они приходят через день и красят по одному участку (участков 100 штук) в красный или зелёный цвет. Первый маляр дальтоник и путает цвета, он помнит, что и в какой цвет он сам покрасил, и видит, что покрасил второй маляр, но не знает, в какой цвет. Первый маляр добивается того, чтобы в наибольшем числе мест зелёный участок граничил с красным. Какого наибольшего числа переходов он может добиться (как бы ни действовал второй маляр)? Замечание. Считается, что дачные участки расположены в одну линию. Докажите, что можно выбрать такие различные действительные числа a1, a2, ..., a10, что уравнение |
Страница: 1 2 >> [Всего задач: 8]
Докажите, что можно выбрать такие различные действительные числа a1, a2, ..., a10, что уравнение
Докажите, что все члены этой последовательности – целые числа.
При каком наименьшем n квадрат n×n можно разрезать на квадраты 40×40 и 49×49 так, чтобы квадраты обоих видов присутствовали?
Для неотрицательных чисел x и y, не превосходящих 1, докажите, что
Страница: 1 2 >> [Всего задач: 8] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|