ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Фольклор

В окружность вписаны две равнобочные трапеции так, что каждая сторона одной трапеции параллельна некоторой стороне другой.
Докажите, что диагонали одной трапеции равны диагоналям другой.

Вниз   Решение


Имя входного файла:

numbers.in

Имя выходного файла:

numbers.out

Максимальное время работы на одном тесте:

1 секунда

Максимальный объем используемой памяти:

64 мегабайта

Максимальная оценка за задачу:

100 баллов

   

Саша считает красивыми числа, десятичная запись которых не содержит других цифр, кроме 0 и k (1 ? k ? 9). Например, если k = 2, то такими числами будут 2, 20, 22, 2002 и т.п. Остальные числа Саше не нравятся, поэтому он представляет их в виде суммы красивых чисел. Например, если k = 3, то число 69 можно представить так: 69 = 33 + 30 + 3 + 3.

Однако, не любое натуральное число можно разложить в сумму красивых целых чисел. Например, при k = 5 число 6 нельзя представить в таком виде. Но если использовать красивые десятичные дроби, то это можно сделать: 6 = 5.5 + 0.5.

Недавно Саша изучил периодические десятичные дроби и начал использовать и их в качестве слагаемых. Например, если k = 3, то число 43 можно разложить так: 43 = 33.(3) + 3.(3) + 3 + 3.(3).

Оказывается, любое натуральное число можно представить в виде суммы положительных красивых чисел. Но такое разложение не единственно - например, число 69 можно также представить и как 69 = 33 + 33 + 3. Сашу заинтересовало, какое минимальное количество слагаемых требуется для представления числа n в виде суммы красивых чисел.

Требуется написать программу, которая для заданных чисел n и k находит разложение числа n в сумму положительных красивых чисел с минимальным количеством слагаемых.

Формат входных данных

Во входном файле записаны два натуральных числа n и k (1 ≤ n ≤ 109; 1≤ k ≤ 9).

Формат выходных данных

В выходной файл выведите разложение числа n в сумму положительных чисел, содержащих только цифры 0 и k, количество слагаемых в котором минимально. Разложение должно быть представлено в виде:

n=a1+a2+...+am

Слагаемые a1, a2, ..., am должны быть выведены без ведущих нулей, без лишних нулей в конце дробной части. Запись каждого слагаемого должна быть такой, что длины периода и предпериода дробной части имеют минимально возможную длину. Например, неправильно выведены числа: 07.7; 2.20; 55.5(5); 0.(66); 7.(0); 7. ; .5; 0.33(03). Их следует выводить так: 7.7; 2.2; 55.(5); 0.(6); 7; 7; 0.5; 0.3(30).

Предпериод и период каждого из выведенных чисел должны состоять не более чем из 100 цифр. Гарантируется, что хотя бы одно такое решение существует. Если искомых решений несколько, выведите любое. Порядок слагаемых может быть произвольным.

Выходной файл не должен содержать пробелов.

Примеры

numbers.in

numbers.out

69 3

69=33+33+3

6 5

6=5.5+0.5

10 9

10=9.(9)

ВверхВниз   Решение


На сторонах AB, BC, CA треугольника ABC выбраны точки P, Q, R соответственно таким образом, что  AP = CQ  и четырёхугольник RPBQ– вписанный. Касательные к описанной окружности треугольника ABC в точках A и C пересекают прямые RP и RQ в точках X и Y соответственно. Докажите, что  RX = RY.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 54]      



Задача 109853  (#06.5.9.4)

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Гомотетичные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вспомогательные подобные треугольники ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 9,10,11

Автор: Скробот Д.

Дан треугольник ABC. Окружность ω касается описанной окружности Ω треугольника ABC в точке A, пересекает сторону AB в точке K, а также пересекает сторону BC. Касательная CL к окружности ω такова, что отрезок KL пересекает сторону BC в точке T. Докажите, что отрезок BT равен по длине касательной, проведённой из точки B к ω.

Прислать комментарий     Решение

Задача 109854  (#06.5.9.5)

Темы:   [ НОД и НОК. Взаимная простота ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Простые числа и их свойства ]
Сложность: 4+
Классы: 8,9,10

Пусть a1, a2, ..., a10 – натуральные числа,  a1 < a2 < ... < a10.  Пусть bk – наибольший делитель ak, меньший ak. Оказалось, что b1 > b2 > ... > b10.
Докажите, что  a10 > 500.

Прислать комментарий     Решение

Задача 109855  (#06.5.9.6)

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вспомогательные равные треугольники ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Неравенства с углами ]
Сложность: 4
Классы: 8,9

На сторонах AB, BC, CA треугольника ABC выбраны точки P, Q, R соответственно таким образом, что  AP = CQ  и четырёхугольник RPBQ– вписанный. Касательные к описанной окружности треугольника ABC в точках A и C пересекают прямые RP и RQ в точках X и Y соответственно. Докажите, что  RX = RY.

Прислать комментарий     Решение

Задача 109856  (#06.5.9.7)

Темы:   [ Замощения костями домино и плитками ]
[ Геометрия на клетчатой бумаге ]
[ Связность. Связные множества ]
[ Теория игр (прочее) ]
[ Четность и нечетность ]
Сложность: 4+
Классы: 8,9,10,11

Клетчатый квадрат 100×100 разрезан на доминошки. Двое играют в игру. Каждым ходом игрок склеивает две соседних по стороне клетки, между которыми был проведён разрез. Игрок проигрывает, если после его хода фигура получилась связной, то есть весь квадрат можно поднять со стола, держа его за одну клетку. Кто выиграет при правильной игре – начинающий или его соперник?

Прислать комментарий     Решение

Задача 109857  (#06.5.9.8)

Темы:   [ Итерации ]
[ Квадратные уравнения. Теорема Виета ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 9,10,11

Дан квадратный трёхчлен  f(x) = x² + ax + b.  Уравнение  f(f(x)) = 0  имеет четыре различных действительных корня, сумма двух из которых равна  –1. Докажите, что  b ≤ – ¼.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 54]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .