ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Фомин С.В.

  а) Четыре порта 1, 2, 3, 4 расположены (в этом порядке) на окружности круглого острова. Их связывает плоская сеть дорог, на которых могут быть перекрёстки, то есть точки, где пересекаются, сходятся или разветвляются дороги. На всех участках дорог введено одностороннее движение так, что, выехав от любого порта или перекрёстка, нельзя вернуться в него снова. Пусть  fij  означает число различных путей, идущих из порта i в порт j. Докажите неравенство   f14f23f13f24.
  б) Докажите, что если портов шесть: 1, 2, 3, 4, 5, 6 (по кругу в этом порядке), то   f16f25f34 + f15f24f36 + f14f26f35f16f24f35 + f15f26f34 + f14f25f36.

Вниз   Решение


Для постройки типового дома не хватало места. Архитектор изменил проект: убрал два подъезда и добавил три этажа. При этом количество квартир увеличилось. Он обрадовался и решил убрать ещё два подъезда и добавить ещё три этажа.
Могло ли при этом квартир стать даже меньше, чем в типовом проекте? (В каждом подъезде одинаковое число этажей и на всех этажах во всех подъездах одинаковое число квартир.)

ВверхВниз   Решение


Учитель продиктовал классу задание, которое каждый ученик выполнил в своей тетради. Вот это задание:

  Нарисуйте две концентрические окружности радиусов 1 и 10. К малой окружности проведите три касательные так, чтобы их точки пересечения A, B и C лежали внутри большой окружности. Измерьте площадь S треугольника ABC и площади SA, SB и SC трёх образовавшихся криволинейных треугольников с вершинами в точках A, B и C. Найдите  SA + SB + SC – S.

Докажите, что у всех учеников (если они правильно выполнили задание) получились одинаковые результаты.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 97879  (#1)

Темы:   [ Турниры и турнирные таблицы ]
[ Подсчет двумя способами ]
[ Средние величины ]
Сложность: 4-
Классы: 7,8,9

Автор: Фольклор

Восемь волейбольных команд провели турнир в один круг (каждая команда сыграла с каждой один раз). Доказать, что можно выделить такие четыре команды A, B, C и D, что A выиграла у B, C и D; B выиграла у C и D, C выиграла у D.

Прислать комментарий     Решение

Задача 97880  (#2)

 [Игра "кошки-мышки"]
Темы:   [ Симметричная стратегия ]
[ Шахматная раскраска ]
Сложность: 3
Классы: 7,8,9

Кошка ловит мышку в лабиринтах А, Б, В. Кошка ходит первой, начиная с узла, отмеченного буквой "К". Затем ходит мышка (из узла "М"), затем опять кошка и т. д. Из любого узла кошка и мышка ходят в любой соседний узел. Если в какой-то момент кошка и мышка оказываются в одном узле, кошка ест мышку. Сможет ли кошка поймать мышку в каждом из случаев А, Б, В?

Прислать комментарий     Решение

Задача 108612  (#3)

Темы:   [ Перегруппировка площадей ]
[ Концентрические окружности ]
Сложность: 3
Классы: 8,9

Учитель продиктовал классу задание, которое каждый ученик выполнил в своей тетради. Вот это задание:

  Нарисуйте две концентрические окружности радиусов 1 и 10. К малой окружности проведите три касательные так, чтобы их точки пересечения A, B и C лежали внутри большой окружности. Измерьте площадь S треугольника ABC и площади SA, SB и SC трёх образовавшихся криволинейных треугольников с вершинами в точках A, B и C. Найдите  SA + SB + SC – S.

Докажите, что у всех учеников (если они правильно выполнили задание) получились одинаковые результаты.

Прислать комментарий     Решение

Задача 97882  (#4)

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9

Автор: Фомин С.В.

Два шахматиста играют между собой в шахматы с часами (сделав ход, шахматист останавливает свои часы и пускает часы другого). Известно, что после того, как оба сделали по 40 ходов, часы обоих шахматистов показывали одно и то же время: 2 часа 30 мин.

  а) Докажите, что в ходе партии был момент, когда часы одного обгоняли часы другого не менее, чем на 1 мин. 51 сек.
  б) Можно ли утверждать, что в некоторый момент разница показаний часов была равна 2 мин.?

Прислать комментарий     Решение

Задача 34976  (#5)

Темы:   [ Дискретное распределение ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 7,8,9,10,11

Автор: Фомин С.В.

Двое бросают монету: один бросил ее 10 раз, другой – 11 раз.
Чему равна вероятность того, что у второго монета упала орлом большее число раз, чем у первого?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .