ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Два четырехугольника $ABCD$ и $A_1B_1C_1D_1$ симметричны друг другу относительно точки $P$. Известно, что четырехугольники $A_1BCD$, $AB_1CD$ и $ABC_1D$ вписанные. Докажите, что $ABCD_1$ тоже вписанный.

Вниз   Решение


Автор: Тригуб А.

В треугольнике $ABC$ $N$ – середина дуги $ABC$ описанной окружности треугольника, $NP$ и $NT$ – касательные к вписанной окружности. Прямые $BP$ и $BT$ пересекают второй раз описанную окружность треугольника в точках $P_1$ и $T_1$ соответственно. Докажите, что $PP_1=TT_1$.

ВверхВниз   Решение


Автор: Mahdi Etesami Fard

Окружность $\omega_1$ проходит через вершину $A$ параллелограмма $ABCD$ и касается лучей $CB$, $CD$. Окружность $\omega_2$ касается лучей $AB$, $AD$ и касается внешним образом $\omega_1$ в точке $T$. Докажите, что $T$ лежит на диагонали $AC$.

ВверхВниз   Решение


Найдите площадь фигур, изображенных на рисунке.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 22]      



Задача 103946

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 2-
Классы: 6,7

Число A положительно, В отрицательно, а C равно нулю. Каков знак числа AB+ AC+BC?
Прислать комментарий     Решение


Задача 103971

Темы:   [ Объединение, пересечение и разность множеств ]
[ Формула включения-исключения ]
Сложность: 2-
Классы: 5,6,7

В киоске около школы продается мороженое двух видов: «Спортивное» и «Мальвина». На перемене 24 ученика успели купить мороженое. При этом 15 из них купили «Спортивное», а 17 – мороженое «Мальвина». Сколько человек купили мороженое обоих сортов?
Прислать комментарий     Решение


Задача 103972

Темы:   [ Формула включения-исключения ]
[ Объединение, пересечение и разность множеств ]
Сложность: 2
Классы: 5,6,7,8

В классе все увлекаются математикой или биологией. Сколько человек в классе, если математикой занимаются 15 человек, биологией – 20, а математикой и биологией – 10?
Прислать комментарий     Решение


Задача 103945

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 2
Классы: 5,6,7

Конфеты "Сладкая математика" продаются по 12 штук в коробке, а конфеты "Геометрия с орехами" – по 15 штук в коробке.
Какое наименьшее число коробок конфет того и другого сорта необходимо купить, чтобы тех и других конфет было поровну?

Прислать комментарий     Решение

Задача 103947

Тема:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 2
Классы: 5,6,7

Найдите площадь фигур, изображенных на рисунке.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .