ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Дан треугольник АВС и две прямые l1, l2. Через произвольную точку D на стороне АВ проводится прямая, параллельная l1, пересекающая АС в точке Е, и прямая, параллельная l2, пересекающая ВС в точке F. Построить точку D, для которой отрезок EF имеет наименьшую длину.

Вниз   Решение


Разрежьте изображённую на рисунке доску на четыре одинаковые части, чтобы каждая из них содержала три заштрихованные клетки.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 103812  (#1)

Темы:   [ Арифметические действия. Числовые тождества ]
[ Ребусы ]
Сложность: 2-
Классы: 6

Автор: Замков В.

Витя выложил из карточек с цифрами пример на сложение и затем поменял местами две карточки. Как видите, равенство нарушилось. Какие карточки переставил Витя?

Прислать комментарий     Решение


Задача 103813  (#2)

Тема:   [ Обыкновенные дроби ]
Сложность: 2+
Классы: 6

В папирусе Ринда (Древний Египет) среди прочих сведений содержатся разложения дробей в сумму дробей с числителем 1, например,
2/73 = 1/60 + 1/219 + 1/292 + 1/x. Один из знаменателей здесь заменён буквой x. Найдите этот знаменатель.

Прислать комментарий     Решение

Задача 103814  (#3)

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 2
Классы: 7

В корзине лежат 30 грибов – рыжиков и груздей. Известно, что среди любых 12 грибов имеется хотя бы один рыжик, а среди любых 20 грибов – хотя бы один груздь. Сколько рыжиков и сколько груздей в корзине?

Прислать комментарий     Решение


Задача 103815  (#4)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Таблицы и турниры (прочее) ]
Сложность: 2
Классы: 6

Разрежьте изображённую на рисунке доску на четыре одинаковые части, чтобы каждая из них содержала три заштрихованные клетки.

Прислать комментарий     Решение


Задача 103816  (#5)

Темы:   [ Наглядная геометрия в пространстве ]
[ Развертка помогает решить задачу ]
[ Раскраски ]
Сложность: 3
Классы: 8,9

Придумайте раскраску граней кубика, чтобы в трёх различных положениях он выглядел, как показано на рисунке. (Укажите, как раскрасить невидимые грани, или нарисуйте развёртку.)

Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .