ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

а) В городе Мехико для ограничения транспортного потока для каждой частной автомашины устанавливаются два дня недели, в которые она не может выезжать на улицы города. Семье требуется каждый день иметь в распоряжении не менее десяти машин. Каким наименьшим количеством машин может обойтись семья, если её члены могут сами выбирать запрещенные дни для своих автомобилей?

б) В Мехико для каждой частной автомашины устанавливается один день в неделю, в который она не может выезжать на улицы города. Состоятельная семья из десяти человек подкупила полицию, и для каждой машины они называют два дня, один из которых полиция выбирает в качестве невыездного дня. Какое наименьшее количество машин нужно купить семье, чтобы каждый день каждый член семьи мог самостоятельно ездить, если утверждение невыездных дней для автомобилей идёт последовательно?

Вниз   Решение


Для каждого k от 1 до 6 найдите наименьшее натуральное число, которое имеет ровно k различных делителей.

ВверхВниз   Решение


Вписанная окружность треугольника ABC касается сторон BC, CA и AB в точках A', B' и C'. Известно, что  AA' = BB' = CC'.
Обязательно ли треугольник ABC правильный?

ВверхВниз   Решение


На столе лежат в ряд пять монет: средняя — вверх орлом, а остальные — вверх решкой. Разрешается одновременно перевернуть три рядом лежащие монеты. Можно ли при помощи нескольких таких переворачиваний все пять монет положить вверх орлом?

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 97]      



Задача 102981

Тема:   [ Отношение порядка ]
Сложность: 2
Классы: 5,6

Если для вчера завтра был четверг, то какой день будет вчера для послезавтра?
Прислать комментарий     Решение


Задача 102983

Тема:   [ Взвешивания ]
Сложность: 2
Классы: 5

Имеются чашечные весы без гирь и 3 одинаковые по внешнему виду монеты, одна из которых фальшивая: она легче настоящих (настоящие монеты одного веса). Сколько надо взвешиваний, чтобы определить фальшивую монету?
Прислать комментарий     Решение


Задача 102985

Темы:   [ Теория алгоритмов ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 5,6

На столе лежат в ряд пять монет: средняя — вверх орлом, а остальные — вверх решкой. Разрешается одновременно перевернуть три рядом лежащие монеты. Можно ли при помощи нескольких таких переворачиваний все пять монет положить вверх орлом?
Прислать комментарий     Решение


Задача 102989

Темы:   [ Задачи-шутки ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6,7

В книжном шкафу стоят по порядку четыре тома собрания сочинений Астрид Линдгрен, по 200 страниц в каждом томе. Червячок, живущий в этом собрании прогрыз путь от первой страницы первого тома до последней страницы четвертого тома. Сколько страниц прогрыз червячок?
Прислать комментарий     Решение


Задача 102991

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 2 и 4 ]
[ Признаки делимости на 3 и 9 ]
Сложность: 2
Классы: 5,6

а) Может ли число, составленное только из четвёрок, делиться на число, составленное только из троек?
б) А наоборот?

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 97]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .