ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В некотором государстве каждый город соединён с каждым дорогой. Сумасшедший король хочет ввести на дорогах одностороннее движение так, чтобы выехав из любого города, в него нельзя было вернуться. Можно ли так сделать?

Вниз   Решение


Отличник Поликарп составлял максимальное пятизначное число, которое состоит из различных нечётных цифр. Двоечник Колька составлял минимальное пятизначное число, которое состоит из различных чётных цифр. Какие числа должны были составить Поликарп и Колька?

ВверхВниз   Решение


У двух человек было два квадратных торта. Каждый сделал на своем торте по 2 прямолинейных разреза от края до края. При этом у одного получилось три куска, а у другого — четыре. Как это могло быть?

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 97]      



Задача 102968

Тема:   [ Отношение порядка ]
Сложность: 2
Классы: 4,5

a) Яблоко тяжелее банана, а банан тяжелее киви. Что тяжелее — киви или яблоко?
б) Мандарин легче груши, а апельсин тяжелее мандарина. Что тяжелее — груша или апельсин?
Прислать комментарий     Решение


Задача 102970

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 2
Классы: 5,6

Используя пять двоек, арифметические действия и возведение в степень, составьте числа от 11 до 20.
Прислать комментарий     Решение


Задача 102971

Тема:   [ Разные задачи на разрезания ]
Сложность: 2
Классы: 4,5

У двух человек было два квадратных торта. Каждый сделал на своем торте по 2 прямолинейных разреза от края до края. При этом у одного получилось три куска, а у другого — четыре. Как это могло быть?
Прислать комментарий     Решение


Задача 102973

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 5 и 10 ]
Сложность: 2
Классы: 5,6

Попробуйте найти все натуральные числа, которые больше своей последней цифры в 5 раз.

Прислать комментарий     Решение

Задача 102980

Темы:   [ Десятичная система счисления ]
[ Лингвистика ]
[ Перебор случаев ]
Сложность: 2
Классы: 5,6

Одно трехзначное число состоит из различных цифр, следующих в порядке возрастания, а в его названии все слова начинаются с одной и той же буквы. Другое трехзначное число, наоборот, состоит из одинаковых цифр, но в его названии все слова начинаются с разных букв. Какие это числа?
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 97]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .