Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 42]
|
|
Сложность: 3+ Классы: 7,8,9
|
Двое по очереди выписывают на доску натуральные числа от 1 до 1000. Первым
ходом первый игрок выписывает на доску число 1. Затем очередным ходом на
доску можно выписать либо число
2
a , либо число
a+1
, если на доске уже
написано число
a . При этом запрещается выписывать числа, которые уже
написаны на доске. Выигрывает тот, кто выпишет на доску число 1000. Кто
выигрывает при правильной игре?
|
|
Сложность: 3+ Классы: 7,8,9
|
В средней клетке полоски 1×2005 стоит фишка.
Два игрока по очереди сдвигают ее: сначала первый игрок передвигает фишку на одну клетку в любую
сторону, затем второй передвигает ее на 2 клетки, 1-й – на 4 клетки, 2-й – на 8 и т.д.
(
k-й сдвиг происходит на
2
k-1 клеток).
Тот, кто не может сделать очередной ход, проигрывает.
Кто может выиграть независимо от игры соперника?
|
|
Сложность: 4- Классы: 10,11
|
Глава Монетного двора хочет выпустить монеты 12 номиналов (каждый – в натуральное число рублей) так, чтобы любую сумму от 1 до 6543 рублей можно было заплатить без сдачи, используя не более 8 монет. Сможет ли он это сделать?
(При уплате суммы можно использовать несколько монет одного номинала.)
|
|
Сложность: 4- Классы: 9,10,11
|
Олег нарисовал пустую таблицу 50×50 и написал сверху от каждого столбца и слева от каждой строки по числу. Оказалось, что все 100 написанных чисел различны, причём 50 из них рациональные, а остальные 50 – иррациональные. Затем в каждую клетку таблицы он записал сумму чисел, написанных около её строки и её столбца ("таблица сложения"). Какое наибольшее количество сумм в этой таблице могли оказаться рациональными числами?
|
|
Сложность: 4- Классы: 9,10,11
|
Олег нарисовал пустую таблицу 50×50 и написал сверху от каждого столбца и слева от каждой строки по ненулевому числу. Оказалось, что все 100 написанных чисел различны, причём 50 из них рациональные, а остальные 50 – иррациональные. Затем в каждую клетку таблицы он записал произведение чисел, написанных около её строки и её столбца ("таблица умножения"). Какое наибольшее количество произведений в этой таблице могли оказаться рациональными числами?
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 42]