ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Дидин М.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 66581

Темы:   [ Деление с остатком. Арифметика остатков ]
[ Теория алгоритмов (прочее) ]
Сложность: 3
Классы: 8,9,10

Автор: Дидин М.

В комнате находится несколько детей и куча из 2021 конфеты. Каждый из них по очереди подходит к куче, делит количество конфет в ней на количество детей в комнате (включая себя), округляет (если получилось нецелое число), забирает полученное число конфет и покидает комнату. При этом мальчики округляют вверх, а девочки – вниз. Докажите, что суммарное количество конфет у мальчиков, когда все выйдут из комнаты, не зависит от порядка детей в очереди.
Прислать комментарий     Решение


Задача 67484

Темы:   [ Арифметические действия. Числовые тождества ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 7,8,9,10

Автор: Дидин М.

Барон Мюнхгаузен взял несколько карточек и написал на каждой по натуральному числу (числа могут повторяться). Барон утверждает, что использовал только две различные цифры, зато когда он для каждой пары карточек нашёл сумму чисел на них, то среди первых цифр этих сумм встретились все цифры от 1 до 9. Могут ли слова барона быть правдой?
Прислать комментарий     Решение


Задача 66848

Темы:   [ Теория алгоритмов (прочее) ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Дидин М.

По кругу стоят буквы A и B, всего 41 буква. Можно заменять ABA на B и наоборот, а также BAB на A и наоборот.
Верно ли, что из любого начального расположения можно получить такими операциями круг, на котором стоит ровно одна буква?

Прислать комментарий     Решение

Задача 67041

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 3+
Классы: 8,9

Автор: Дидин М.

Выпуклый $n$-угольник  ($n$ > 4)  обладает таким свойством: если диагональ отсекает от него треугольник, то этот треугольник равнобедренный. Докажите, что среди любых четырёх сторон этого n-угольника есть хотя бы две равных.

Прислать комментарий     Решение

Задача 66653

Темы:   [ Биссектриса угла ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 8,9,10

Автор: Дидин М.

Пусть $D$ – основание внешней биссектрисы угла $B$ треугольника $ABC$, в котором $AB > BC$. Сторона $AC$ касается вписанной и вневписанной окружностей в точках $K$ и $K_1$ соответственно, точки $I$ и $I_1$ – центры этих окружностей. Прямая $BK$ пересекает $DI_1$ в точке $X$, а $BK_1$ пересекает $DI$ в точке $Y$. Докажите, что $XY \perp AC$.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .