ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Кожевников П.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 75]      



Задача 64466

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10

а) Дан выпуклый четырёхугольник ABCD. Пусть  r1r2r3r4  – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABC, BCD, CDA, DAB. Может ли оказаться, что  r4 > 2r3?

б) В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке E. Пусть  r1r2r3r4  – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABE, BCE, CDE, DAE. Может ли оказаться, что  r2 > 2r1?

Прислать комментарий     Решение

Задача 64743

Темы:   [ Взаимное расположение двух окружностей ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3+
Классы: 10,11

Каждая из двух равных окружностей ω1 и ω2 проходит через центр другой. Треугольник ABC вписан в ω1, а прямые AC, BC касаются ω2.
Докажите, что  cos∠A + cos∠B = 1.

Прислать комментарий     Решение

Задача 65071

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Даны натуральные числа a и b, причём  a < 1000.  Докажите, что если a21 делится на b10, то a² делится на b.

Прислать комментарий     Решение

Задача 65097

Темы:   [ Пятиугольники ]
[ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Выпуклый пятиугольник ABCDE таков, что  AB || CD,  BC || AD,  AC || DECEBC.  Докажите, что EC – биссектриса угла BED.

Прислать комментарий     Решение

Задача 65391

Темы:   [ Арифметическая прогрессия ]
[ НОД и НОК. Взаимная простота ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Сто натуральных чисел образуют возрастающую арифметическую прогрессию. Возможно ли, что каждые два из этих чисел взаимно просты?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 75]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .