Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 90]
|
|
Сложность: 3+ Классы: 8,9,10
|
Окружности ω1 и ω2 касаются внешним
образом в точке P. Через центр ω1 проведена прямая l1, касающаяся ω2. Аналогично прямая l2 касается ω1 и проходит через центр ω2. Оказалось, что прямые l1 и l2
непараллельны. Докажите, что точка P лежит на биссектрисе одного из углов, образованных l1 и l2.
|
|
Сложность: 3+ Классы: 8,9,10
|
В остроугольном треугольнике ABC проведены высоты AA1
и CC1. Описанная окружность Ω треугольника ABC пересекает прямую A1C1 в точках A' и C'. Касательные к Ω, проведённые в точках A' и C', пересекаются в точке B'. Докажите, что прямая BB' проходит через центр окружности Ω.
|
|
Сложность: 3+ Классы: 7,8,9
|
Среди пяти внешне одинаковых монет 3 настоящие и две фальшивые, одинаковые по весу, но
неизвестно, тяжелее или легче настоящих. Как за наименьшее число взвешиваний найти
хотя бы одну настоящую монету?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В выпуклом четырехугольнике $ABCD$ точки $K$, $L$, $M$, $N$ – середины сторон $BC$, $CD$, $DA$, $AB$ соответственно. Отрезки $AK$, $BL$, $CM$, $DN$, пересекаясь, делят друг друга на три части. Оказалось, что отношение длины средней части к длине всего отрезка одно и то же для всех четырех отрезков. Верно ли, что $ABCD$ – параллелограмм?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Дан треугольник $ABC$. Прямая $AB$ касается его вписанной окружности в точке $C'$, а вневписанной, касающейся стороны $BC$, – в точке $C'_a$. Аналогично определяются точки $C'_b$, $C'_c$, $A'$, $A'_a$, $A'_b$, $A'_c$, $B'$, $B'_a$, $B'_b$, $B'_c$. Рассмотрим длины 12 отрезков – высот треугольников $A'B'C'$, $A'_aB'_aC'_a$, $A'_bB'_bC'_b$, $A'_cB'_cC'_c$.
а) Какое наибольшее число различных может быть среди них?
б) Найдите все возможные количества различных длин.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 90]