Страница:
<< 1 2
3 >> [Всего задач: 12]
Дано натуральное число n. Рассматриваются такие тройки различных
натуральных чисел (a, b, c), что a + b + c = n. Возьмём наибольшую возможную такую систему троек, что никакие две тройки системы не имеют общих элементов. Число троек в этой системе обозначим через K(n). Докажите, что
а) K(n) > n/6 – 1;
б) K(n) < 2n/9.
Сумма шестых степеней шести целых чисел на единицу больше, чем их ушестерённое произведение.
Докажите, что одно из чисел равно единице или минус единице, а остальные – нули.
|
|
Сложность: 4- Классы: 8,9,10
|
Докажите, что для любых положительных чисел а1, ..., an справедливо неравенство
|
|
Сложность: 4 Классы: 8,9,10
|
Пусть m, n и k – натуральные числа, причём m > n. Какое из двух чисел больше:
или
(В каждом выражении k знаков квадратного корня, m и n чередуются.)
|
|
Сложность: 4 Классы: 8,9,10
|
Набор чисел A1, A2, ..., A100 получен некоторой перестановкой из чисел 1, 2, ..., 100. Образуют сто чисел:
B1 = A1, B2 = A1 + A2, B3 = A1 + A2 + A3, ..., B100 = A1 + A2 + A3 + ... + A100.
Докажите, что среди остатков от деления на 100 чисел B1, B2, ..., B100 найдутся 11 различных.
Страница:
<< 1 2
3 >> [Всего задач: 12]