ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 162]      



Задача 78681

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Теория игр (прочее) ]
[ Полуинварианты ]
Сложность: 5-
Классы: 8,9,10

Белые и чёрные играют в следующую игру. В углах шахматной доски стоят два короля: белый на a1, чёрный на h8. Играющие делают ход по очереди. Начинают белые. Играющий может ставить своего короля на любое соседнее поле (если только оно свободно), соблюдая следующие правила: нельзя увеличивать расстояние между королями (расстоянием между двумя полями называется наименьшее число шагов короля, за которое он может пройти с одного поля на другое: так, в начале игры расстояние между королями – 7 ходов). Выигрывает тот, кто поставит своего короля на противоположную кромку доски (белого короля на вертикаль h или восьмую горизонталь, чёрного – на вертикаль a или первую горизонталь). Кто выиграет при правильной игре?

Прислать комментарий     Решение

Задача 66734

Темы:   [ Теория алгоритмов (прочее) ]
[ Теория игр (прочее) ]
Сложность: 5
Классы: 8,9,10,11

Рокфеллер и Маркс играют в такую игру. Имеется  $n > 1$  городов, во всех одно и то же число жителей. Сначала у каждого жителя есть ровно одна монета (монеты одинаковы). За ход Рокфеллер выбирает по одному жителю из каждого города, а Маркс перераспределяет между ними их деньги произвольным образом с единственным условием, чтобы распределение не осталось таким, каким только что было. Рокфеллер выиграет, если в какой-то момент в каждом городе будет хотя бы один человек без денег. Докажите, что Рокфеллер может действовать так, чтобы всегда выигрывать, как бы ни играл Маркс, если в каждом городе
  а) ровно $2n$ жителей;
  б) ровно  $2n - 1$  житель.

Прислать комментарий     Решение

Задача 66880

Темы:   [ Теория графов (прочее) ]
[ Теория игр (прочее) ]
Сложность: 5
Классы: 8,9,10,11

За каждым из двух круглых столиков сидит по $n$ гномов. Каждый дружит только со своими соседями по столику слева и справа. Добрый волшебник хочет рассадить гномов за один круглый стол так, чтобы каждые два соседних гнома дружили между собой. Он имеет возможность подружить $2n$ пар гномов (гномы в паре могут быть как с одного столика, так и с разных), но после этого злой волшебник поссорит между собой $n$ пар гномов из этих $2n$ пар. При каких $n$ добрый волшебник может добиться желаемого, как бы ни действовал злой волшебник?
Прислать комментарий     Решение


Задача 65752

Темы:   [ Выпуклые многоугольники ]
[ Доказательство от противного ]
[ Теория игр (прочее) ]
Сложность: 3
Классы: 10,11

Внутри выпуклого 100-угольника выбрана точка X, не лежащая ни на одной его стороне или диагонали. Исходно вершины многоугольника не отмечены. Петя и Вася по очереди отмечают ещё не отмеченные вершины 100-угольника, причём Петя начинает и первым ходом отмечает сразу две вершины, а далее каждый своим очередным ходом отмечает по одной вершине. Проигрывает тот, после чьего хода точка X будет лежать внутри многоугольника с отмеченными вершинами. Докажите, что Петя может выиграть, как бы ни ходил Вася.

Прислать комментарий     Решение

Задача 97948

Темы:   [ Задачи на движение ]
[ Примеры и контрпримеры. Конструкции ]
[ Теория игр (прочее) ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

В центре квадратного бассейна находится мальчик, а в вершине на берегу стоит учительница. Максимальная скорость мальчика в воде в три раза меньше максимальной скорости учительницы на суше. Учительница плавать не умеет, а на берегу мальчик бегает быстрее учительницы. Сможет ли мальчик убежать?

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 162]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .