ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 499]      



Задача 109807

Темы:   [ Десятичная система счисления ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5-
Классы: 9,10,11

Существует ли такое натуральное число  n > 101000,  не делящееся на 10, что в его десятичной записи можно переставить две различные ненулевые цифры так, чтобы множество его простых делителей не изменилось?

Прислать комментарий     Решение

Задача 110076

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
[ Последовательности (прочее) ]
Сложность: 5-
Классы: 9,10,11

Саша написал на доске ненулевую цифру и приписывает к ней справа по одной ненулевой цифре, пока не выпишет миллион цифр. Докажите, что на доске не более 100 раз был написан точный квадрат.
Прислать комментарий     Решение


Задача 110150

Темы:   [ Десятичная система счисления ]
[ Задачи с ограничениями ]
[ Подсчет двумя способами ]
Сложность: 5-
Классы: 9,10,11

Автор: Карасев Р.

Расстоянием между числами  a1a2a3a4a5  и  b1b2b3b4b5  назовём максимальное i, для которого  aibi.  Все пятизначные числа выписаны друг за другом в некотором порядке. Какова при этом минимально возможная сумма расстояний между соседними числами?

Прислать комментарий     Решение

Задача 111837

Темы:   [ Десятичная система счисления ]
[ Деление с остатком ]
[ Правило произведения ]
[ Кооперативные алгоритмы ]
[ Оценка + пример ]
Сложность: 5-
Классы: 9,10,11

Фокусник с помощником собираются показать такой фокус. Зритель пишет на доске последовательность из N цифр. Помощник фокусника закрывает две соседних цифры чёрным кружком. Затем входит фокусник. Его задача – отгадать обе закрытые цифры (и порядок, в котором они расположены). При каком наименьшем N фокусник может договориться с помощником так, чтобы фокус гарантированно удался?

Прислать комментарий     Решение

Задача 65245

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
[ Доказательство от противного ]
[ Подсчет двумя способами ]
[ Сочетания и размещения ]
Сложность: 5
Классы: 9,10,11

  Обозначим через S(k) сумму цифр натурального числа k. Натуральное число a назовём n-хорошим, если существует такая последовательность натуральных чисел a0, a1, ..., an, что  an = a  и  ai+1 = ai – S(ai)  при всех  i = 0, 1, ..., n – 1.  Верно ли, что для любого натурального n существует натуральное число, являющееся n-хорошим, но не являющееся (n+1)-хорошим?

Прислать комментарий     Решение

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .