|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На шахматной доске 4×4 расположена фигура – "летучая ладья", которая ходит так же, как обычная ладья, но не может за один ход стать на поле, соседнее с предыдущим. Может ли она за 16 ходов обойти всю доску, становясь на каждое поле по разу, и вернуться на исходное поле? Найти число решений в натуральных числах уравнения [x/10] = [x/11] + 1. Докажите, что все углы, образованные сторонами и диагоналями правильного n-угольника, кратны 180°/n. Из центра окружности выходят N векторов, концы которых делят её на N равных дуг. Некоторые векторы синие, остальные – красные. Подсчитаем сумму углов "красный вектор – синий вектор" (каждый угол вычисляется от красного вектора к синему против часовой стрелки) и разделим её на общее число всех таких углов. Докажите, что полученная величина "среднего угла" равна 180°. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 182]
Докажите, что сумма расстояний от любой точки, расположенной внутри правильного n-угольника, до его сторон не зависит от выбора точки.
Докажите, что середины сторон правильного многоугольника образуют правильный многоугольник.
Докажите, что выпуклый n-угольник является правильным тогда и только тогда, когда он переходит в себя при повороте на угол 360°/n вокруг некоторой точки.
Отмечены вершины и середины сторон правильного десятиугольника (то есть всего отмечено 20 точек).
Дан правильный 4n-угольник A1A2...A4n площади S, причём n > 1. Найдите площадь четырёхугольника A1AnAn +1An+2.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 182] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|