ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Группа психологов разработала тест, пройдя который, каждый человек получает оценку – число Q – показатель его умственных способностей (чем больше Q, тем больше способности). За рейтинг страны принимается среднее арифметическое значений Q всех жителей этой страны.
  а) Группа граждан страны А эмигрировала в страну Б. Покажите, что при этом у обеих стран мог вырасти рейтинг.
  б) После этого группа граждан страны Б (в числе которых могут быть и бывшие эмигранты из А) эмигрировала в страну А. Возможно ли, что рейтинги обеих стран опять выросли?
  в) Группа граждан страны А эмигрировала в страну Б, а группа граждан Б – в страну В. В результате этого рейтинги каждой страны оказались выше первоначальных. После этого направление миграционных потоков изменилось на противоположное – часть жителей В переехала в Б, а часть жителей Б – в А. Оказалось, что в результате рейтинги всех трёх стран опять выросли (по сравнению с теми, которые были после первого переезда, но до начала второго). (Так, во всяком случае, утверждают информационные агентства этих стран.) Может ли такое быть (если да, то как, если нет, то почему)?

(Предполагается, что за рассматриваемое время Q граждан не изменилось, никто не умер и не родился.)

Вниз   Решение


Чётными или нечётными будут сумма и произведение:
  а) двух чётных чисел?
  б) двух нечётных чисел?
  в) чётного и нечётного чисел?

ВверхВниз   Решение


При каких натуральных a и b число logab будет рациональным?

ВверхВниз   Решение


Напишите в строчку первые 10 простых чисел. Как вычеркнуть 6 цифр, чтобы получилось наибольшее возможное число?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 502]      



Задача 87981

Тема:   [ Десятичная система счисления ]
Сложность: 2-
Классы: 5,6,7

Попробуйте найти все натуральные числа, которые больше своей последней цифры в 5 раз.
Прислать комментарий     Решение


Задача 87992

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 2-
Классы: 5,6,7

Одно трехзначное число состоит из различных цифр, следующих в порядке возрастания, а в его названии все слова начинаются с одной и той же буквы. Другое трехзначное число, наоборот, состоит из одинаковых цифр, но в его названии все слова начинаются с разных букв. Какие это числа?
Прислать комментарий     Решение


Задача 88081

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 2-
Классы: 5,6,7

Напишите в строчку первые 10 простых чисел. Как вычеркнуть 6 цифр, чтобы получилось наибольшее возможное число?
Прислать комментарий     Решение


Задача 88142

Тема:   [ Десятичная система счисления ]
Сложность: 2-
Классы: 5,6,7

Найдите наибольшее шестизначное число, у которого каждая цифра, начиная с третьей, равна сумме двух предыдущих цифр.
Прислать комментарий     Решение


Задача 88143

Тема:   [ Десятичная система счисления ]
Сложность: 2-
Классы: 5,6,7

Найдите наибольшее число, у которого каждая цифра, начиная с третьей, равна сумме двух предыдущих цифр.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 502]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .