ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Замков В.

Витя выложил из карточек с цифрами пример на сложение и затем поменял местами две карточки. Как видите, равенство нарушилось. Какие карточки переставил Витя?

Вниз   Решение


Может ли среднее арифметическое 35 целых чисел равняться 6,35?

ВверхВниз   Решение


Средний возраст одиннадцати игроков футбольной команды – 22 года. Во время матча один из игроков получил травму и ушёл с поля. Средний возраст оставшихся на поле игроков стал равен 21 году. Сколько лет футболисту, получившему травму?

ВверхВниз   Решение


Геометрической интерпретацией итерационного процесса служит итерационная ломаная. Для ее построения на плоскости Oxy рисуется график функции f(x) и проводится биссектриса координатного угла — прямая y=x. Затем на графике функции отмечаются точки A0(x0,f(x0)), A1(x1,f(x1)),..., An(xn,f(xn)),... а на биссектрисе координатного угла — точки B0(x0,x0), B1(x1,x1),..., Bn(xn,xn),... Ломаная B0A0B1A1... BnAn... называется итерационной.
Постройте итерационные ломаные для следующих данных:
а) f (x) = 1 + $ {\dfrac{x}{2}}$,    x0 = 0, x0 = 8;
б) f (x) = $ {\dfrac{1}{x}}$,    x0 = 2;
в) f (x) = 2x - 1,    x0 = 0, x0 = 1, 125;
г) f (x) = - $ {\dfrac{3x}{2}}$ + 6,     x0 = $ {\dfrac{5}{2}}$;
д) f (x) = x2 + 3x - 3,    x0 = 1, x0 = 0, 99, x0 = 1, 01;
е) f (x) = $ \sqrt{1+x}$,    x0 = 0, x0 = 8;
ж) f (x) = $ {\dfrac{x^3}{3}}$ - $ {\dfrac{5x^2}{2}}$ + $ {\dfrac{25x}{6}}$ + 3,     x0 = 3.

ВверхВниз   Решение


Как вы думаете, среди четырёх последовательных натуральных чисел будет ли хотя бы одно делиться  а) на 2?  б) на 3?  в) на 4?  г) на 5?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 2458]      



Задача 60463

Тема:   [ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2-
Классы: 5,6,7

Разложите на простые множители числа 111, 1111, 11111, 111111, 1111111.

Прислать комментарий     Решение

Задача 88246

Тема:   [ Деление с остатком ]
Сложность: 2-
Классы: 5,6,7

Изменятся ли частное и остаток, если делимое и делитель увеличить в 3 раза?

Прислать комментарий     Решение

Задача 89919

Тема:   [ Четность и нечетность ]
Сложность: 2-
Классы: 5,6,7

Чётными или нечётными будут сумма и произведение:
  а) двух чётных чисел?
  б) двух нечётных чисел?
  в) чётного и нечётного чисел?

Прислать комментарий     Решение

Задача 30289

Темы:   [ Четность и нечетность ]
[ Замощения костями домино и плитками ]
Сложность: 2
Классы: 5,6,7

Можно ли доску размером 5×5 заполнить доминошками размером 1×2?

Прислать комментарий     Решение

Задача 30290

Темы:   [ Четность и нечетность ]
[ Многоугольники ]
Сложность: 2
Классы: 5,6,7

а) Дан осесимметричный выпуклый 101-угольник. Докажите, что ось симметрии проходит через одну из его вершин.
б) Что можно сказать в случае десятиугольника?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 2458]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .