Страница:
<< 1 2 3 4 5 6
7 >> [Всего задач: 33]
|
|
Сложность: 4 Классы: 9,10,11
|
Дан треугольник АВС и две прямые l1, l2. Через произвольную точку D на стороне АВ проводится прямая, параллельная l1, пересекающая АС в точке Е, и прямая, параллельная l2, пересекающая ВС в точке F. Построить точку D, для которой отрезок EF имеет наименьшую длину.
|
|
Сложность: 4+ Классы: 10,11
|
От правильного октаэдра со стороной 1 отрезали шесть углов – пирамидок с квадратным основанием и ребром ⅓. Получился многогранник, грани которого – квадраты и правильные шестиугольники. Можно ли копиями такого многогранника замостить пространство?
|
|
Сложность: 4+ Классы: 10,11
|
Можно ли замостить все пространство равными
тетраэдрами, все грани которых — прямоугольные треугольники?
|
|
Сложность: 5- Классы: 10,11
|
Каждое ребро выпуклого многогранника параллельно перенесли на некоторый
вектор так, что ребра образовали каркас нового выпуклого многогранника.
Обязательно ли он равен исходному?
|
|
Сложность: 6- Классы: 10,11
|
Муха летает внутри правильного тетраэдра с ребром
a. Какое наименьшее
расстояние она должна пролететь, чтобы побывать на каждой грани и вернуться в
исходную точку?
Страница:
<< 1 2 3 4 5 6
7 >> [Всего задач: 33]