|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что бесконечная десятичная дробь 0,1234567891011121314... (после запятой подряд выписаны все натуральные числа по порядку) представляет собой иррациональное число. При посадке в самолет выстроилась очередь из n пассажиров, у каждого из которых имеется билет на одно из n мест. Первой в очереди стоит сумасшедшая старушка. Она вбегает в салон и садится на случайное место (возможно, и на свое). Далее пассажиры по очереди занимают свои места, а в случае, если свое место уже занято, садятся случайным образом на одно из свободных мест. Какова вероятность того, что последний пассажир займет свое место? Пусть f(x) - некоторый многочлен, про который известно, что уравнение f(x)=x не имеет корней. Докажите, что тогда и уравнение f(f(x))=x не имеет корней. Пусть a и b – два положительных числа, причём a < b. Построим по этим числам две последовательности {an} и {bn} по правилам: a0 = a, b0 = b, an+1 =
Докажите, что обе эти последовательности имеют один и тот же предел. Этот предел называется арифметико-геометрическим средним чисел a, b и обозначается μ(a, b). Найдите диагональ прямоугольника со сторонами 5 и 12. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 543]
На высоте AH треугольника ABC взята точка M. Докажите, что AB² – AC² = MB² – MC².
Рассмотрим равнобедренные треугольники с одними и теми же боковыми сторонами.
Радиус окружности равен 13, хорда равна 10. Найдите её расстояние от центра.
Найдите диагональ прямоугольника со сторонами 5 и 12.
Найдите расстояние от центра окружности радиуса 10 до хорды, равной 12.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 543] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|