ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На координатной плоскости дан выпуклый пятиугольник ABCDE с вершинами в целых точках. Докажите, что внутри или на границе пятиугольника A1B1C1D1E1 (см. рис.) есть хотя бы одна целая точка.


Вниз   Решение


Докажите, что рациональные числа из отрезка [0;1] можно покрыть системой интервалов суммарной длины не больше 1/1000.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 3]      



Задача 65842

Темы:   [ Счетные и несчетные подмножества ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Найдутся ли такие функции p(x) и q(x), что p(x) – чётная функция, а p(q(x)) – нечётная функция (отличная от тождественно нулевой)?

Прислать комментарий     Решение

Задача 35644

Темы:   [ Счетные и несчетные подмножества ]
[ Покрытия ]
Сложность: 4
Классы: 10,11

Докажите, что рациональные числа из отрезка [0;1] можно покрыть системой интервалов суммарной длины не больше 1/1000.
Прислать комментарий     Решение


Задача 67439

Темы:   [ Рациональные и иррациональные числа ]
[ Счетные и несчетные подмножества ]
[ Прямые, лучи, отрезки и углы (прочее) ]
Сложность: 4+
Классы: 9,10,11

Можно ли на плоскости из каждой точки с рациональными координатами выпустить луч так, чтобы никакие два луча не имели общей точки и при этом среди прямых, содержащих эти лучи, никакие две не были бы параллельны?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .